Энергообеспечение организма человека при мышечной работе. Анаэробные и аэробные механизмы энергообеспечения Энергообеспечение мышечной деятельности

Любая мышечная работа требует энергии. Механическую энергию, затрачиваемую при напряжении мышца, берёт из собственных резервов химической энергии. Энергия, которая освобождается в результате сложных биохимических реакций, доставляется к тонким белковым нитям (мышечным волокнам), заставляет их менять своё положение, соединяться друг с другом и укорачиваться. Тем самым мышца, укорачиваясь, производит движение в суставе.

Энергия, необходимая для мышечной работы, образующаяся в результате биохимических реакций, основана на использовании трёх видов энергообразования: 1) аэробного, 2) анаэробно-гликолитического, 3) анаэробно-алактатного. Биоэнергетическими веществами (топливом) при выполнении мышечной работы являются углеводы , жиры и креатинфосфат. Белки необходимы организму, прежде всего как строительный материал для новых клеток.

Питательные вещества, проходя через желудочно-кишечный тракт, всасываются кровью и направляются дальше в «складские помещения». Жиры, которые могут быть рассмотрены как «низкоактановое топливо», откладываются преимущественно в подкожных тканях, Углеводы (гликоген) – высокоактановое топливо, накапливаются в мышцах и печени .

Если мощность выполняемой работы небольшая (умеренная), то энергия для работающих мышц образуется путём сгорания (окисления) углеводов и жиров при помощи вдыхаемого кислорода. В результате сгорания выделяется энергия, необходимая для работающих мышц и образуются побочные продукты – углекислый газ и вода.

Если мощность работы будет гораздо выше (большая или субмаксимальная), то энергии, выделяемой при сгорании углеводов (гликогена) будет не хватать и поэтому энергия, необходимая для такой работы образуется путём расщепления гликогена (без участия кислорода). Можно сказать, что в мышце имеется два механизма биохимических реакций – сгорания и расщепления.

Механизм сгорания (окисления)

Механизм сгорания углеводов и жиров можно назвать как аэробный процесс энергообразования (аэробный – с участием кислорода). Развёртывание аэробных процессов происходит постепенно, максимума этот процесс достигает через 1 -2 минуты после начала работы. Происходит полное сгорание углеводов и жиров, при котором образуется энергия, углекислый газ со2 и вода н2о, которые оттранспортировываются кровью.

Углеводы и жиры + кислород → сгорание = энергия + углекислый газ + вода.

Для того чтобы происходило сгорание (окисление), помимо «топлива» (углеводов и жиров) мышцы и ткани должны всё время снабжаться кислородом и освобождаться от продуктов «распада» (воды и углекислого газа). Транспортировка этих веществ осуществляется кровью. Чем больше кислорода получают мышцы, тем больше энергии может образовываться и тем более интенсивную работу можно выполнить. Поэтому аэробные возможности лимитируются дыхательной и сердечно-сосудистой системами. Утомление наступает, когда кончается «топливо». При соблюдении этих условий мышечная среда остаётся постоянной и можно работать 2-3 часа и более. Механизм сгорания (окисления) – доминирующий источник энергии при длительной малоинтенсивной и умеренной интенсивности работе (а также в покое).

Таблица №2. Зависимость между продолжительностью соревновательной дистанции и функциональной активностью различных систем организма, характеризующих аэробные возможности.

Механизм расщепления (анаэробный – без участия кислорода).

Механизм расщепления биоэнергетических веществ в человеческом организме происходит двумя путями: 1) расщепление гликогена, находящегося в мышцах – анаэробно-гликолитический механизм; 2) расщепление креатинфосфата (КрФ), так же находящегося в мышце – анаэробно-алактатный механизм.

Анаэробно – гликолитический механизм. Освобождение энергии происходит за счёт мгновенного расщепления содержащегося в мышце гликогена (более сложной формы углеводов).

Гликоген → расщепление = Энергия + молочная кислота (лактат).

Этот механизм даёт гораздо больше энергии в единицу времени, чем аэробный механизм и используется при выполнении работы субмаксимальной мощности, с продолжительностью отдельного упражнения от 30 секунд до 2-3 минут. Преимущество этого механизма, который можно сравнить с разрядкой электрической батареи, состоит в том, что он заключается в самой мышце и используется мгновенно. Недостаток же заключается в том, что в работающих мышцах накапливается большое количество молочной кислоты и им становится трудно справляться с воздействием кислой среды.

Таблица №3. Зависимость между продолжительностью соревновательной дистанции и функциональной активностью различных систем организма, характеризующих анаэробно-гликолитические возможности.

Анаэробно-алактатный механизм.

Для выполнения упражнений с максимальной скоростью (мощностью) необходим механизм, выделяющий наибольшее количество энергии в единицу времени, но действующий кратковременно (не более 15-20 секунд). Таким механизмом и является анаэробно-алактатный (креатинфосфатный).

Креатинфосфат (КрФ) → расщепление = Энергия + Креатин (Кр.).

Таблица №4. Зависимость между продолжительностью соревновательной дистанции и функциональной активностью различных систем организма, характеризующих анаэробно-алактатные возможности.

I. Источники энергии в самбо

II. Факторы, определяющие энергосбережение в борьбе.

III. Основные виды механизмов энергообеспечения:

a) Алактатный механизм

b) Гликолитический механизм

c) Аэробный механизм

IV. Энергообеспечение мышц и типы мышечных волокон

V. Критерии оценки механизма энергообеспечения

Скачать:

Предварительный просмотр:

УПРАВЛЕНИЕ ОБРАЗОВАНИЯ АДМИНИСТРАЦИИ ГОРОДСКОГО ОКРУГА ГОРОД ВЫКСА МБУ ДО «ДЮЦ «ТЕМП»»

МЕХАНИЗМЫ ЭНЕРГООБЕСПЕЧЕНИЯ

В САМБО

Выполнил:

учащийся объединения «Самбо»

Дмитриев Андрей Вадимович

15 лет

г. Выкса

2016 г.

  1. Источники энергии в самбо 2
  2. Факторы, определяющие энергосбережение

в борьбе. 2

  1. Основные виды механизмов

энергообеспечения: 3

  1. Алактатный механизм 3
  2. Гликолитический механизм 4
  3. Аэробный механизм 5
  1. Энергообеспечение мышц и типы мышечных

волокон 8

  1. Критерии оценки механизма

энергообеспечения 9

  1. Список литературы и интернет- ресурсов 10

ОБЩАЯ ХАРАКТЕРИСТИКА БОРЬБЫ САМБО

Современное самбо характеризуется высокой двигательной активностью спортсменов, изменчивостью состава атакующих и защитных действий, большим эмоциональным и физическим напряжением. Непрерывное изменение ситуаций на борцовском ковре требует от борца максимальной концентрации внимания, умения быстро и точно ориентироваться в обстановке. Мгновенно реагировать на действия противника, самому создавать благоприятные условия для атаки, и проводить тактические и технические приёмы. Всё это требует от борца огромной затраты энергии.

Непосредственным источником энергии для обеспечения энергетических потребностей организма служит аденозинтрифосфорная кислота (). В молекуле имеется особый вид химической связи. Только при расщеплении этой химической связи освобождается энергия, которая может быть использована для выполнения различных видов работ, в т. ч и мышечной. При этом происходит расщепление на аденозиндифосфорную () и свободную фосфорную кислоту с высвобождением энергии по уравнению: +Е,

где Е –энергия, используемая для обеспечения работы.

В физиологических условиях, то есть при условиях, которые имеются в живой клетке, расщепление моля сопровождается выделением 10 – 12 ккал энергии (43 -50 кДж).

Главными потребителями энергии в организме являются

  • реакции синтеза;
  • мышечная деятельность;
  • транспорт молекул и ионов через мембраны.

Мышечная ткань относится к числу наиболее богатых тканей организма человека. Содержание в ней составляет 0,4-0,5% и практически не меняется под влиянием тренировки. Это количество содержит сравнительно наибольший запас энергии, которого хватает буквально на несколько секунд напряжённой мышечной работы. Кроме того, мышца не может расщепить весь наличный запас . Уже при снижении содержания наполовину мышца теряет способность к сокращению. Поэтому для обеспечения жизнедеятельности его нужно постоянно воссоздавать – ресинтезировать. В обычных условиях количество ресинтезируется за счёт аэробных процессов (аэробного окисления), идущих с участием кислорода. Это наиболее удобный и энергетически наиболее выгодный для организма процесс.

При напряжённой работе, когда системы потребления, транспорта и использования кислорода не обеспечивают потребности организма в энергии, в ресинтез включаются анаэробные, не требующие кислорода процессы: алактатный анаэробный (креатинофосфатный) и лактатный анаэробный (гликолиз). Эти три основных механизма энергообеспечения отличаются друг от друга своими возможностями, которые характеризуются через скорость развёртывания, максимальную мощность, ёмкость, энергетическую эффективность.

Максимальная мощность процесса энергосбережения характеризуется наибольшим количеством энергии, которое тот может поставить для энергетического обеспечения работы в единицу времени. Ёмкость процесса энергообеспечения оценивается временем, в течении которого процесс может обеспечить работу энергией. Для проявления выносливости особенно большое значение имеют те свойства организма борца, которые определяют ёмкость процесса энергосбережения.

В соответствии с тремя основными механизмами энергетического обеспечения работы различают 3 компонента выносливости борца: алактатный, гликолитический и аэробный. Проявление каждого из этих компонентов определяется, с одной стороны, возможностями соответствующего механизма энергообеспечения, в первую очередь, их ёмкостью, с другой –интенсивностью, продолжительностью и другими особенностями выполняемой мышечной работы.

Остановимся на каждой из трёх основных механизмов энергообеспечения.

АЛАКТАТНЫЙ МЕХАНИЗМ ЭНЭРГООБЕСПЕЧЕНИЯ

Кроме клетки организма человека содержат ещё одно содержащее фосфор соединение. Имеющее тип химической связи, аналогичный фосфатной химической связи в молекуле . Это креатинфосфат (). За счёт энергии, заключённой в этой химической связи молекулы может осуществляться ресинтез из по уравнению: ,

где – креатин, вещество, образующееся при превращении креатинфосфата.

Креатинфосфатный (алактатный анаэробный) механизм ресинтеза обладает наивысшей скоростью развёртывания и наибольшей мощностью. Своей максимальной мощности он может достичь через 1-2 секунды после начала интенсивной мышечной работы. Его максимальная мощность в 3-4 раза превышает мощность аэробного окисления и примерно в 1,5 раза мощность гликолиза. Креатинфосфатный механизм обеспечивает энергией кратковременные упражнения, мощность которых близка к максимальной (скоростные, скоростные –силовые, силовые с большим отягощением), резкие изменения интенсивности по ходу выполняемых работ. Выносливость в таких упражнениях определяется, с одной стороны, запасами креатинфосфата, с другой – скоростью его расходования, которая, в свою очередь, зависит от мощности выполняемого упражнения и эффективности спортивной техники.

ГЛИКОЛИТИЧЕСКИЙ МЕХАНИЗМ ЭНЕРГООБЕСПЕЧЕНИЯ

Другой анаэробный механизм энергообеспечения – гликолиз. Гликолизом называют анаэробное (без участия кислорода) расщепление углеводов (гликогена или глюкозы) до стадии образования молочной кислоты. При этом за счёт освобождающейся при расщеплении углеводов энергии происходит ресинтез , Гликолиз нельзя отнести к числу высокоэффективных процессов. В процессе гликолиза освобождается и используется на ресинтез только небольшая часть энергии, заключённой в химических связях углеводов. Основная часть энергии остаётся в химических связях молочной кислоты. Однако суммарное количество освобождающейся энергии оказывается достаточно большим, обеспечивающим выполнение значительной мышечной работы. Скорость развёртывания гликолиза составляет 15-30 секунд от начала интенсивной мышечной работы, максимальная мощность в 1,5 раза ниже мощности креатинфосфатной реакции и в 1,5-2 раза выше максимальной мощности аэробного механизма энергообеспечения. Ёмкость гликолиза оценить очень сложно, т. к. он участвует в энергообеспечении только в комплексе с другими процессами ресинтеза .

Роль гликолиза при мышечной деятельности спортсмена очень важна и разнообразна. Он снабжает организм энергией на начальных этапах напряжённой мышечной работы, при резком увеличении мощности, при финишном рывке. В борьбе самбо, где работа характеризуется переменной интенсивностью, роль гликолиза велика, т. к. высокоэффективная работа составляет значительную долю общей продолжительности борцовского поединка.

АЭРОБНЫЙ МЕХАНИЗМ ЭНЕРГООБЕСПЕЧЕНИЯ

Не менее важное значение, чем анаэробные, имеет для борца аэробный механизм энергообеспечения. Аэробное окисление – важнейший путь энергообеспечения организма человека. С первого до последнего мгновения жизни человек дышит, потребляя из окружающей среды кислород, используемый в процессах аэробного биологического окисления. Аэробное окисление – это процесс, обладающий множеством достоинств. В качестве энергетических субстратов в процессах биологического окисления используются углеводы, жиры, продукты белкового обмена, суммарные запасы которых в организме очень большие и которые могут обеспечить энергией неизмеримо большой объём работы, чем тот, который можно выполнить в одном даже очень объёмном тренировочном задании.

Конечными продуктами аэробного окисления являются и , вещества легко удаляемые из организма (с дыханием, с потом, с мочой) и, поэтому, не оказывающее на него никакого существенного отрицательного воздействия. Аэробное окисление процесс высоко энергетически эффективный. Приблизительно 60% энергии, освобождающейся в ходе аэробных превращений, используется полезно – на образование . Остальные 40%энергии освобождаются в виде тепла, которого в обычных условиях едва хватает на поддержание температуры тела.

Однако аэробное окисление имеет существенные недостатки, которые проявляются в процессе выполнения напряжённой мышечной работы. Во-первых, медленно развёртывается (меняет свою скорость) после начала мышечной работы, относительно медленно перестраивается при повышении интенсивности работы по ходу её выполнения. В этом процессе участвуют дыхательная и сердечно- сосудистая системы, система крови, внутриклеточные механизмы транспорта. Перестройка деятельности всех этих систем не может происходить мгновенно и требует времени. Безусловно, у хорошо тренированных спортсменов эта перестройка происходит значительно быстрее, чем у менее тренированных. Положительное влияние на скорость перестройки оказывает и выполняемая перед основной тренировкой разминка. Но всё равно проблемы остаются. Второй, ещё более существенный недостаток – сравнительно невысокая мощность. Аэробный путь не может обеспечить достаточным количеством энергии работу высокой интенсивности.

Что касается ещё одной стороны аэробного биологического окисления – его ёмкости, то по этому показателю оно существенно превосходит анаэробные пути энергосбережения. Можно сказать, что ёмкость аэробного окисления безгранична – он обеспечивает организм энергией на протяжении всей жизни.

Поскольку борцу приходится неоднократно в течение дня проводить 4-минутные схватки, то эффективность продуцирования энергии в аэробных условиях играет весьма важную роль для эффективного восстановления работоспособности, как между схватками, так и в процессе схваток между борцами. Для повышения аэробной производительности эффективны многократные тренировочные и соревновательные поединки с продолжительностью работы на 20-30% превышающей соревновательную, а также схватки невысокой интенсивности и значительной продолжительности (до 20 минут). Оптимальной при этом интенсивностью считается такая, которая достигает порога анаэробного обмена (ЧСС – 150-160 уд/мин). Сокращая интервалы между схватками и используя борьбу переменной интенсивности, можно активизировать дыхательные процессы.

Роль аэробного пути энергообеспечения чрезвычайна важна для борца. Основное количество энергии во время тренировочной и соревновательной деятельности борец получает за счёт аэробного окисления. Это своеобразный фоновый механизм, обеспечивающий энергией больший объём тренировочной и соревновательной работы. Анаэробные реакции привлекаются тогда, когда интенсивность работы высока: быстрые броски, удержания соперника на лопатках, подсечки и другие элементы схватки.

Вкратце механизмы рассмотрели, теперь необходимо разобраться с тем, когда же они работают. Начнём с того, что в состоянии покоя организм также потребляет энергию. Энергия покоя, или основной обмен покрывается за счёт аэробных механизмов с некоторым соотношением липолиза и гликолиза. В начале выполнения низкоинтенсивной борьбы аэробный липолиз и гликолиз просто повышают свою мощность. При дальнейшем увеличении мощности работы данная тенденция сохраняется. Но, в определённый момент, в работу начинает включаться анаэробный гликолиз. Момент его включения соответствует аэробному порогу. Мощность работы возрастает, и теперь уже три механизма увеличивают свою мощность пропорционально. Анаэробный гликолиз подбрасывает в кровь молочную кислоту, которая успешно утилизируется и не приносит особого вреда. Но, через некоторое время наступает анаэробный порог. В этот момент продукция лактата начинает превышать возможности для его оперативной утилизации, и он начинает накапливаться. При дальнейшем повышении мощности работы организма всё меняется – аэробные механизмы «растут» медленнее, анаэробные – быстрее. Так продолжается до тех пор, пока концентрация молочной кислоты не достигнет индивидуального предельного уровня. Может случиться так, что в одной точке потребление кислорода перестанет расти, так вот – это точка максимального потребления кислорода, или максимальной мощности аэробных механизмов энергообеспечения.

ЭНЕРГООБЕСПЕЧЕНИЕ МЫШЦ И ТИПЫ МЫШЕЧНЫХ ВОЛОКОН

Скорость восстановления энергии борца во многом зависит от типов мышечных волокон.

Быстрые волокна – больше скорость расхода

Медленные волокна – меньше скорость расхода

Быстрые мышечные волокна () очень быстро тратят энергию и требуют очень быстрого восстановления молекул , обеспечить быстрое восстановление молекул может только анаэробный гликолиз. Это объясняет почему борцы выполняют броски на скорость на протяжении 20-30 секунд.

Медленные мышечные волокна () гораздо медленнее тратят энергию, поэтому путь восстановления энергии является окислительным. Благодаря этому медленные мышечные волокна гораздо сложнее утомить ( работают очень длительное время, но они не справляются с большим весом).

КРИТЕРИИ ОЦЕНКИ МЕХАНИЗМА ЭНЕРГООБЕСПЕЧЕНИЯ

Таким образом, можно сделать вывод, что любая мышечная работа требует энергии. Спортивный результат борца в определенной степени лимитируется уровнем развития механизмов энергообеспечения организма. Оценка функциональных изменений в механизмах энергообеспечения мышечной деятельности имеет важное значение для контроля за развитием физических качеств спортсмена, оптимизации и совершенствования тренировочного процесса. И самую главную роль в энергообеспечении борца играет аэробный механизм энергообеспечения, т.к. основное количество энергии во время тренировочной и соревновательной деятельности борец получает за счёт аэробного окисления. 6-12

Еф - эффективность фосфорилирования;

Ее - эффективность электромеханического сопряжения;

Ем - общий КПД при преобразовании энергии метаболических процессов в механическую работу.

СПИСОК ЛИТЕРАТУРЫ И ИНТЕРНЕТ РЕСУРСЫ

1. Захаров Е.Н., Карасев А.В., Сафонов А.А. Энциклопедия физической подготовки (Методические основы развития физических качеств). Под общей ред. А.В. Карасева. – М.: Лептос, 2004. – 308 с.

2. Педагогика: Учеб. пособие для студ. высш. учеб. заведений / В.А. Сластенин, И.Ф. Исаев, Е.Н. Шиянов; Под ред. В.А. Сластенина. – М.: Академия, 2002. – 527 с.

3. Спортивная борьба: Учебник для институтов ФК / Под ред. А.П. Купцова. – М.: Физкультура и спорт, 2006. – 236 с.

4. Спортивная борьба: классическая, вольная, самбо. Учебник для институтов физической культуры / под общ. ред. Галовского Н.М., Катулина А.З. – М.: Физкультура и спорт, 1986. – 340 с.

5. Туманян Г.С. Спортивная борьба: теория, методика. В 4-х книгах. Книга 1-я. – М.: Физкультура и спорт, 2002. – 188 с.

воспитания и спорта. – М.: Инфра-М, 2002. – 264 с.

6. Шашурин А.В. Физическая подготовка. – М.: Физкультура и спорт, 2005. – 317 с.

7. Щедрина Ю.С. Физическая культура. – М.: Юнити, 2005. – 350 с.

8. Юдин В.Д. Теория и методика физического воспитания и спорта. – М.: Инфра-М, 2004. – 280 с.

9.http://salda.ws/video.php?id=5QXkyHUUM9E

10. http://www.bibliofond.ru/view.aspx?id=513129

11. https://ru.wikipedia.org/wiki/Заглавная_страница

Моя статья о работе энергетических систем будет полезной тем, кто ходит на семинары инструкторов тренажёрного зала или групповых программ. Многие эту тему не понимают или понимают неправильно. Ниже я вкратце попытался разъяснить принцип включения различных систем в энергообеспечение физических нагрузок.

Д.А.Жабкин
РАБОТА ЭНЕРГЕТИЧЕСКИХ СИСТЕМ ОРГАНИЗМА ПРИ АЭРОБНЫХ ФИЗИЧЕСКИХ НАГРУЗКАХ


Общая характеристика энергетических систем организма

Для любого физиологического процесса в организме, требуется энергия. При мышечной деятельности происходит процесс преобразования химической энергии в механическую работу. Универсальным источником энергии в живом организме является молекула АТФ. Под действием фермента Ca 2+ -АТФ-азы АТФ гидролизуется, отсоединяя фосфатную группу в виде ортофосфорной кислоты, и превращается в АДФ, при этом высвобождается энергия.

АТФ + H 2 O → АДФ + H 3 PO 4 + 7,3 ккал (или 30 кДж)

Запас молекул АТФ в мышце ограничен (около 5 ммоль*кг-1 сырой массы ткани), что может обеспечить выполнение интенсивной работы в течение очень короткого времени (0,5-1,5 секунды или 3-4 одиночных сокращения максимальной силы). Поэтому расход энергии при работе мышцы требует постоянного его восполнения.

Дальнейшая мышечная работа происходит благодаря быстрому ресинтезу АТФ из продуктов её распада и такого количества энергии, которое выделилось при распаде:

АДФ + H 3 PO 4 + 7,3 ккал → АТФ

Мышца имеет 3 основных источника воспроизводства энергии:

1. Богатые энергией фосфатосодержащие вещества, которые присутствуют в тканях (АДФ, креатинфосфат);

2. Богатые энергией фосфатосодержащие вещества, которые образуются в процессе катаболизма гликогена, жирных кислот и других энергетических субстратов (дифосфоглицериновая кислота, фосфопировиноградная кислота и др.);

3. Энергия протонного градиента на мембране митохондрий, образующаяся в результате окисления различных веществ.

В зависимости от того, с помощью какого биохимического процесса поставляется энергия для получения молекул АТФ, выделяют 4 механизма ресинтеза АТФ в тканях или энергетические системы организма.

Для того, чтобы понять основные отличия энергетических систем, пользуются следующими характеристиками:

Ёмкость энергетической системы – это количество АТФ, способное образоваться за счёт данной системы.

Мощность энергетической системы – это количество АТФ, производимое системой за единицу времени.

Скорость развёртывания – время достижения максимальной мощности системы от начала работы.
Метаболическая эффективность – та часть энергии, которая накапливается в макроэргических связях АТФ. Она определяет экономичность выполняемой работы и оценивается коэффициентом полезного действия.

Таблица 1. Общая характеристика энергетических систем

система мощность, дж*кг*мин -1 максимальная мощность ёмкость, кДж*кг -1 субстраты основное ограничение существенная роль время восстановления
Фосфогенная 3770 6-12 секунд, Время развёртывания: 0,5-0,7 сек 630 АТФ, КФ содержание КФ интенсивная кратковременная работа 2-30 сек 40-60 мин
Лактатная 2500 60-180 секунд Время развёртывания: через 20-40 сек 1050 глюкоза, гликоген накопление молочной кислоты кратковременная интенсивная работа от 3 сек до 3-х минут 2-5 час
Аэробная 1250 6-10 минут. Время развёртывания: через 2-3 мин глюкоза, гликоген количество гликогена, скорость доставки О 2 5-24 час
жирные кислоты скорость доставки О 2 Сутки, несколько суток

Данные в таблице 1 получены путём измерения данных показателей у высококвалифицированных спортсменов. У нетренированных людей данные значения ниже.

Теперь остановимся поподробнее на отдельных энергетических системах.

Креатинфосфатная (фосфогенная, алактатная) система

АТФ в этой системе образуется в результате реакции Ломана, которая происходит в присутствии фермента креатинфосфаткиназы.

АДФ + КреатинФосфат → АТФ + креатин

Запасы креатинфосфата в волокне в 3-4 раза выше, чем АТФ. Но этого количества хватает для использования его в качестве источника энергии только на начальном этапе работы мышцы в первую минуту, до момента активизации других более мощных источников. По окончании работы мышцы реакция Ломана идет в обратном направлении, и запасы креатинфосфата в течение нескольких минут восстанавливаются.

Эта система определяет алактатную работоспособность мышц.

Максимальная алактатная мощность зависит от:

1. концентрации и активности фермента креатинфосфаткиназа (переносящего фосфатную группу с креатинфостфата на АДФ).

2. концентрации креатинфосфата.

Длительность удержания максимальной алактатной мощности составляет 6-12 секунд.
Алактатная емкость зависит от запасов креатинфосфата в мышце.

Эффективность креатинфосфаткиназной реакции очень велика (76%), так как реакция протекает непосредственно между двумя веществами на миофибриллах.

Лактатная (гликолитическая, лактацидная) система

Гликолиз – это процесс распада одной молекулы глюкозы на две молекулы молочной кислоты с выделением энергии, достаточной для фосфорилирования двух молекул АТФ, протекает в саркоплазме под воздействием 10 ферментов.

C 6 H 12 O 6 + 2H 3 PO 4 + 2АДФ → 2C 3 H 6 O 3 + 2АТФ + 2H 2 O

Гликогенолиз – это процесс распада гликогена.

N + 3H 3 PO 4 + 3АДФ → 2C 3 H 6 O 3 + n-1 + 3АТФ + 2H 2 O

Для работы этой системы используются в основном внутримышечные запасы гликогена, а также глюкоза, поступающая из крови.

Гликолиз протекает без потребления кислорода и способен быстро восстанавливать запасы АТФ в мышце. Достигает максимума через 30-40 секунд интенсивной работы.

Эта система определяет лактатную работоспособность мышц.

Максимальная лактатная мощность определяется главным образом концентрацией и активностью ключевых ферментов гликолиза, которые зависят от:

1. устойчивости ферментов гликолиза к повышению кислотности среды, которая ингибирует их активность.

2. устойчивости кислотно-щелочного равновесия внутренней среды мышц, в условиях усиленной выработки молочной кислоты.

Время удержания максимальной мощности данного метаболического процесса составляет 60-180 секунд.

Гликолитическая емкость определяется главным образом запасами гликогена в мышцах, гликоген печени для процессов гликолиза не обладает достаточной мобильностью.

Метаболическая эффективность гликолиза оценивается значениями КПД порядка 0,35-0,52. Это означает, что почти половина всей выделяемой энергии превращается в тепло и не может быть использована в работе.

Умеренный сдвиг pH в кислую сторону активирует работу ферментов дыхательного цикла в митохондриях и усиливает аэробное энергообразование.

Значительное накопление молочной кислоты, появление избыточного СО 2 , изменение рН и гипервентиляция лёгких, отражающие усиление гликолиза в мышцах, обнаруживаются при увеличении интенсивности нагрузки более 50% максимальной аэробной мощности. Этот уровень нагрузки обозначается, как порог анаэробного обмена (ПАНО). Чем раньше он будет достигнут, тем быстрее вступит в действие гликолиз, сопровождающийся накоплением молочной кислоты и последующим развитием утомления работающих мышц.

Величина ПАНО является важным показателем эффективности энергообразования в мышцах, роста степени тренированности, который широко используется при биохимическом контроле функционального состояния спортсмена. С ростом степени тренированности на выносливость ПАНО увеличивается, т.е. наступает при более интенсивной работе.

Миокиназная реакция

«Аварийный» путь ресинтеза АТФ:

АДФ + АДФ → АТФ + АМФ

Происходит в мышцах при значительном увеличении концентрации АДФ в саркоплазме. Такая ситуация возникает при выраженном мышечном утомлении, когда другие пути ресинтеза АТФ уже не справляются.

Эта реакция так же обратима и используется для поддержания постоянного уровня АТФ в мышцах.

Аэробная (кислородная, окислительная) система.

В обычных условиях аэробный механизм ресинтеза АТФ обеспечивает около 90% общего количества АТФ, ресинтезируемой в организме.

Окисление протекает в митохондриях под воздействием специальных ферментов и требует затрат кислорода, а соответственно и времени на его доставку. Такие процессы называются аэробными. Окисление происходит в несколько этапов, сначала идет гликолиз (см. выше), но образовавшиеся в ходе промежуточного этапа этой реакции две молекулы пирувата не преобразуются в молекулы молочной кислоты, а проникают в митохондрии, где окисляются в цикле лимонной кислоты до углекислого газа и воды, давая энергию для производства еще 36 молекул АТФ.

C 6 H 12 O 6 + 6O 2 + 38АДФ + 38H 3 PO 4 → 6CO 2 + 44H 2 О + 38АТФ

Итого распад глюкозы по аэробному пути дает энергию для восстановления 38 молекул АТФ. Т.е. окисление в 19 раз эффективнее гликолиза. Если во время гликолиза организм усваивает в виде АТФ лишь 3% энергии, заложенной в молекуле глюкозы, то при аэробном окислении этот показатель равен 55% (включая те самые 3%). К тому же аэробное окисление может использовать более энергоемкие субстраты, такие как жиры, которые дают в 2 раза больше энергии, чем то же количество углеводов.

Субстратами окисления являются любые органические вещества: белки, жиры, углеводы. Долевое участие будет зависеть от характера работы:

Эта система определяет аэробную работоспособность мышц.

Максимальная аэробная мощность зависит главным образом от:

1. плотности митохондрий в мышечных волокнах;

2. концентрации и активности окислительных ферментов;

3. скорости поступления кислорода вглубь волокна.

Объем кислорода доступного для окислительных реакций лимитируется:

1. состоянием кардио-респираторной системы;

2. капилляризация мышц;

3. концентрация миоглобина;

4. диаметр мышечного волокна (чем меньше диаметр волокна, тем лучше оно снабжается кислородом и тем выше его относительная аэробная мощность).

Показатель количества кислорода, усваиваемого единицей массы тела за единицу времени – МПК (максимальное потребление кислорода).

Скорость производства АТФ за счет окисления достигает максимальных значений на 2-3-й минуте работы, что связано с необходимостью развертывания множества процессов, обеспечивающих доставку кислорода к митохондриям. Время удержания максимальной аэробной мощности составляет примерно 6 минут, в дальнейшем аэробная мощность снижается по причине усталости всех активно работающих систем организма.

Аэробная ёмкость очень высокая, т.к. для окисления используются любые органические вещества.
Метаболическая эффективность этого механизма – около 50%. Она определяется по ПАНО: у нетренированных людей ПАНО наступает при потреблении кислорода примерно 50% от МПК, а у высокотренированных на выносливость – при 80-90% от МПК.

Общая характеристика аэробных физических нагрузок

В спортивный практике к упражнениям аэробного характера относят длительные физические упражнения, где относительный вклад аэробного процесса в затратах энергии превышает 70%.

К аэробным циклическим упражнениям (по Я.М.Коцу, 1986) относятся:

1. упражнения максимальной аэробной мощности (3-10 минут);

2. упражнения близкой к максимальной аэробной мощности (10-30 минут);

3. упражнения субмаксимальной аэробной мощности (30-80 минут);

4. упражнения средней аэробной мощности (80-120 минут);

5. упражнения малой аэробной мощности (более 120 минут).

Аэробный механизм является основным при таких видах спорта, как: бег на дистанции 5-25 км, велогонки, плавание на 800-1500 м, бег на коньках на 5-10 км и др.

Ёмкость аэробного механизма, которая в значительной степени определяется запасами гликогена в скелетных мышцах и печени, а также уровнем утилизации кислорода мышцами, существенно повышается уже в течение 1,5-2 месяцев тренировки на выносливость.

Мощность аэробного механизма, которая зависит от МПК и активности окислительных ферментов, также увеличивается в процессе адаптации к мышечной деятельности через 2-3 месяца тренировок.
Аэробная направленность физических нагрузок происходит, как правило, в зоне умеренной мощности. При этом упражнения выполняются при максимуме аэробного производства энергии.

Кислородный запрос может достигать 500-1500 л, кислородный долг не превышает 5 л (до 10%). Содержание молочной кислоты в крови составляет 0,6-0,8 г*л-1. В ходе работы она может извлекаться тканями и аэробно окисляться в них.

Вследствие усиленного использования запасов гликогена в печени, содержание глюкозы в крови становится ниже 0,8 г*л-1. В моче в значительном количестве появляются продукты распада белков. Отмечается потеря организмом воды и минеральных солей.

Основными упражнениями для развития аэробных процессов энергообеспечения будут физические нагрузки, относящиеся к зоне большой и умеренной мощности с интенсивностью работы на уровне ПАНО и 100% МПК.

Работа энергетических систем во время аэробной физической нагрузки

Для большей вариабельности рассмотрим несколько вариантов аэробной физической нагрузки.
При беге на длинные дистанции (5 и 10 км) аэробное окисление углеводов является основным механизмом энергообеспечения работы, так как на его долю приходится до 87% общих затрат энергии на дистанции 5 км и 97% на дистанции 10 км.

Вклад анаэробных источников на этих дистанциях также достаточно большой. Он может достигать 15% общих затрат энергии и играет важную роль при финишном ускорении, приносящем победу при беге на длинные дистанции.

Наиболее значительным фактором, влияющим на выносливость, является кислородное снабжение работающих мышц, поскольку потребление кислорода во время бега поддерживает максимальную скорость окисления углеводов. Порог анаэробного обмена у стайеров при работе достигается при 75-90% МПК.

При марафонском беге затраты энергии восполняются исключительно за счёт аэробного процесса. Погашение этих затрат невозможно только за счёт окисления углеводов из-за недостаточности запасов гликогена в работающих мышцах спортсмена, поэтому значительная часть энергии образуется за счёт окисления жиров, на долю которых может приходится от 10 до 50% общих затрат энергии.

Вклад жиров на длинных и сверхдлинных дистанциях у высокотренированных бегунов с большими запасами гликогена в работающих мышцах составляет 12-20%, у нетренированных бегунов – более 80%. Всего на дистанции марафонского бега окисляется около 300 г жиров.

Использование жиров в качестве источника энергии менее эффективно по сравнению с окислением углеводов, так как происходит с более низкой скоростью и с большим потреблением кислорода.

Рис 2. Механизмы энергообеспечения бега на 10 000 м и марафонского бега (пунктирная черта показывает момент исчерпания запасов гликогена)

При длительной работе наряду с увеличением использования в энергетическом обмене жиров может происходить новообразование углеводов из веществ неуглеводной природы (глюконеогенез).
Основным субстратом глюконеогенеза являются аминокислоты, часть которых накапливается в мышце при работе в результате распада тканевых белков.

Рассмотрим, как включаются в работу энергетические системы во время аэробных физических нагрузок.

Таблица 2. Вклад различных источников энергии в обеспечение ресинтеза АТФ при беге в аэробном режиме работы (в %).

Дистанция, м Креатинфосфат Анаэробное окисление гликогена мышц Аэробное окисление гликогена мышц Глюкоза крови (гликоген печени) Жирные кислоты
1500 Минимальный 25 75 - -
5000 Минимальный 12,5 87,5 - -
10000 Минимальный 3 97 - -
Марафон - - 75 5 20
Супермарафон (84 км) - - 35 5 60
24-часовой забег - - 10 2 88

При переходе из состояния покоя к мышечной деятельности потребности в кислороде возрастает в несколько раз, но сразу она не может быть удовлетворена. Необходимо время, чтобы усилилась деятельность кардиореспираторной системы, чтобы кровь, обогащённая кислородом смогла дойти до работающих мышц. По мере усиления активности работы этих систем постепенно увеличивается потребление кислорода в работающих мышцах. Скорость потребления кислорода увеличивается до тех пор, пока не наступит истинное устойчивое состояние метаболических процессов, при котором потребление кислорода в данный момент времени точно соответствует потребности организма в нём (кислородному запросу).

До этого момента потребность организма в энергии обеспечивается большей частью за счёт работы анаэробных энергетических систем. Как мы уже отмечали выше, скорость развёртывания креатинфосфатной системы до полной мощности – доли секунды, лактатной – около половины минуты. В зависимости от того, какой кислородный запрос работы имеет нагрузка, кислородный дефицит на начальном её этапе восполняется за счёт разного участия анаэробных систем, но в любом случае развёртывания этих систем на полную мощность при нагрузках аэробного характера не требуется. В результате происходит накопление в организме недоокисленных продуктов анаэробного распада.

Рис 3. Кислородный приход, кислородный дефицит и кислородный долг при аэробной работе (а) лёгкой, (б) тяжёлой интенсивности. 1 – быстрый, 2 – медленный компоненты кислородного долга.

При работе в устойчивом состоянии часть анаэробных метаболитов может окисляться за счёт усиления аэробных реакций в процессе работы, а другая их часть устраняется после работы.

При выполнении работы с уровнем запроса около 50% МПК прирост концентрации молочной кислоты невелик (до 0,4-0,5 г/л), а при выполнении продолжительных нагрузок с уровнем запроса 50-85% МПК, возрастает до 1-1,5 г/л. Концентрация молочной кислоты значительно возрастает в первые 2-10 минут работы, а затем либо остаётся на прежнем уровне, либо снижается. То есть максимальная концентрация молочной кислоты в крови наблюдается до тех пор, пока не установилось устойчивое состояние, создающее условия для аэробного её окисления.

Для восстановления энергетических источников и окисления недоокисленных продуктов требуется дополнительное количество кислорода, поэтому некоторое время после окончания работы потребление его продолжает оставаться повышенным по сравнению с уровнем покоя. Этот излишек потребления кислорода в период восстановления получил название «кислородный долг».

Кислородный долг всегда больше кислородного дефицита. Чем больше интенсивность и продолжительность работы, тем кислородный долг выше.

После работы в устойчивом состоянии кислородный долг наполовину восполняется уже за 30 секунд, а полностью через 3-5 минут. После интенсивной работы «погашение» долга происходит в две фазы.

Быстрый (алактатный) компонент кислородного долга включает то количество кислорода, которое необходимо для ресинтеза АТФ и креатинфосфота. Он характеризует вклад креатинфосфатной энергетической системы в обеспечении выполненной работы.

Медленный (лактатный) компонент кислородного долга включает то количество кислорода, которое необходимо для окисления образовавшейся молочной кислоты при выполнении работы. Его величина характеризует участие лактатной энергетической системы, а при длительной работе – и других процессов, долю которых оценить весьма затруднительно. Медленный компонент устраняется наполовину за 15-25 минут, а полностью – за 1,5-2 часа.

Подводя итог, хочется отметить следующее:

Во время аэробной физической нагрузки работают все энергетические системы организма, но подавляющую роль играет аэробная система;

Все системы начинают работать одновременно с началом нагрузки, но за счёт разной скорости развёртывания процессов энергообразования, аэробная система полностью обеспечивает кислородный запрос не сразу, и на начальном этапе (несколько минут) кислородный приход компенсируют анаэробные энергетические системы.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Волков Н.И., Несен Э.Н., Осипенко А.А., Корсун С.Н. Биохимия мышечной деятельности – Киев: Олимпийская литература, 2000
2. Граевская Н.Д., Долматова Т.И. Спортивная медицина: Курс лекций и практические занятия. В 2х частях. – М.: Советский спорт, 2004
3. Ким Н.К., Дьяконов М.Б. Фитнес. Учебник – М.: Советский спорт, 2006
4. Макарова Г.А. Медицинский справочник тренера – М.: Советский спорт, 2004
5. Руненко С.Д. Фитнес: мифы, иллюзии, реальность – М.: Советский спорт, 2005
6. Протасенко В.А. Думай! Или "Супертренинг" без заблуждений, - журнал «Мускуляр», 2001
7. Хоули Э., Дон Френкс Б. Руководство инструктора оздоровительного фитнеса – Киев. Олимпийская литература, 2004

Таблица 2 - Классификация избыточной массы тела и ожирения по содержанию жира в теле

Низкое 6-10 % 14-18 %

Нормальное 11-17 % 19-22 %

Избыточное 18-20 % 23-30 %

Ожирение Более 20 % Более 30 %

Кроме процентного содержания жира в организме важно отметить его распределение на теле. Для этих целей существует показатель отношения окружности талии к окружности бедер (ОТ/ОБ). Для мужчин этот коэффициент должен быть менее 0,95, а для женщин менее 0,85. Величина ОТ/ОБ для мужчин более 1,0 и женщин более 0,85

Доказано, что ОТ, равная 100 см, косвенно свидетельствует о таком объеме висцеральной жировой ткани, при котором, как правило, развиваются метаболические нарушения и значительно возрастает риск развития сахарного диабета 2 типа.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Шутова, В. И. Ожирение, или синдром избыточной массы тела / В. И. Шутова, Л. И. Данилова // Медицинские новости. - Минск, 2004. - № 7. - С. 41-47.

2. Аметов, А. С. Ожирение и сердечно-сосудистые заболевания / А. С. Аметов, Т. Ю. Демидова, А. Л. Целиковская // Терапевт. арх. - 2001. - T. 73, № 8. - С. 66-69.

3. Вербовая, Н. Е. Ожирение и соматотропный гормон: причинно-следственные отношения / Н. Е. Вербовая, С. В. Булгакова // Проблемы эндокринологии. - М.: Медиа Сфера, 2001. - № 3. - С. 44-47.

4. Глюкозоиндуцированный термогенез у лиц с ожирением / Н. Т. Старкова [и др.] // Пробл. эндокринологии. - 2004. - Т. 50, № 4. - С. 16-18.

5. Milewicz, A. Perimenopausal obesity / A. Milewicz, B. Bidz-inska, A Sidorowicz // Gynecol Endocrinol. - 1996. - № 10(4). - Р. 285-291. Review PMID: 8908531 (проблемы эндокринологии 1998. - № 1. - С. 52-53).

свидетельствует об абдоминальном типе ожирения. Показателем клинического риска развития метаболических осложнений ожирения является также величина окружности талии. Исследования подтвердили тесную корреляцию между степенью развития висцеральной жировой ткани и величиной окружности талии (таблица 3).

6. Краснов, В. В. Масса тела больного ишемической болезнью сердца: спорные и нерешенные вопросы / В. В. Краснов // Кардиология. - 2002. - № 9. - С. 69-71.

7. Аметов, А. С. Принципы питания больных ожирением / А. С. Аметов // Диабет. Образ жизни. - М., 1997. - № 7. - С. 28-30.

8. Вознесенская, Т. Г. Ожирение и метаболизм / Т. Г. Вознесенская // Расстройства пищевого поведения при ожирении и их коррекция. - 2004. - № 2. - С. 25-29.

9. Справочник по клинической фармакологии / Е.А. Холодова [и др.]; под ред. Е. А. Холодовой. - Минск: Беларусь, 1998. - С. 259-277.

10. Окороков, А. Н. Лечение болезней внутренних органов / А. Н. Окороков. - Минск: Выш. шк., 1996. - Т. 2. - С. 455-472.

11. Балаболкин, М. И. Дифференциальная диагностика и лечение эндокринных заболеваний / М. И. Балаболкин, Е. М. Клебанова, В. М. Креминская. - М.: Медицина, 2002. - 751 с.

12. Клиорин, А. И. Ожирение в детском возрасте / А. И. Клио-рин. - Л.: Медицина, 1989. - 256 с.

13. Дедов И. И. Обучение больных ожирением (программа) / И. И. Дедов, С. А. Бутрова, Л. В. Савельева. - М., 2002. - 52 с.

14. Lavin, N. Manual of Endocrinology and Metabolism / N. Lavin. - 2-nd. ed. - Boston: Little, Brown and Company, 1994. - P. 38, 66, 138, 154, 357, 384, 387.

15. Данилова, Л. И. Метаболический синдром: диагностические критерии, лечебные протоколы: учеб.-метод. пособие / Л. И. Данилова, Н. В. Мурашко. - Минск: БелМАПО, 2005. - 26 с.

Поступила 15.05.2014

Таблица 3 - Корреляционная связь между висцеральной жировой тканью и величиной окружности талии

Повышенный риск Высокий риск

Более или равно 94 см Более или равно 102

Более или равно 80 см Более или равно 88 см

УДК: 612.017.2:612.013.7:611.73]:612.766.1

ВЗАИМОДЕЙСТВИЕ И АДАПТАЦИЯ СИСТЕМ ЭНЕРГООБЕСПЕЧЕНИЯ СКЕЛЕТНЫХ МЫШЦ ПРИ ФИЗИЧЕСКИХ НАГРУЗКАХ

Ю. И. Брель

Гомельский государственный медицинский университет

В настоящее время интерес к изучению изменений процессов энергообеспечения при физической нагрузке связан с использованием современных методик исследования аэробного и анаэробного метаболизма скелетных мышц, а также с высокой практической значимостью оценки энергообмена в спортивной медицине для разработки критериев коррекции тренировочного процесса и диагностики перетренированности.

Предлагаемый обзор освещает современные представления о взаимодействии и адаптации систем энергообеспечения при физических нагрузках различной интенсивности и продолжительности.

Ключевые слова: физические нагрузки, энергетический обмен, аэробный метаболизм, анаэробный метаболизм.

INTERACTION AND ADAPTATION OF ENERGY SYSTEMS OF SKELETAL MUSCLES DURING PHYSICAL EXERCISE

Yu. I. Brel Gomel State Medical University

Nowadays, the interest to study of changes in processes of energy supply in physical exercise is associated with the use of modern methods of study of aerobic and anaerobic metabolism in skeletal muscles, and also assessment of energy interchange in sport medicine for correction of training process and diagnostics of overtraining syndrome with high practical significance. This review covers contemporary notions on interaction and adaptation of energy systems in skeletal muscles during physical exercises of different intensity and duration.

Key words: physical exercise, energy exchange, aerobic metabolism, anaerobic metabolism.

Введение

Изучение взаимодействия основных систем энергообеспечения и механизмов, обеспечивающих повышение эффективности их работы при интенсивных физических нагрузках, представляет большой теоретический и практический интерес, так как служит основой для разработки критериев оценки функционального состояния спортсменов и коррекции тренировочного процесса. В настоящее время актуальность изучения изменений процессов энергообеспечения при физической нагрузке связана с возможностью использования современных методик исследования аэробного и анаэробного метаболизма скелетных мышц. Активно изучаются анаэробные механизмы энергообеспечения мышечной работы, их относительный вклад в энергопродукцию при различных физических нагрузках. Возрастает интерес к исследованию механизмов влияния дефицита энергетических субстратов в развитии синдрома перетренированности и других нарушений функционального состояния организма спортсменов . Предлагаемый обзор освещает современные представления о взаимодействии основных систем энергообеспечения и адаптации энергетического обмена при физических нагрузках различной интенсивности и продолжительности.

Источники энергии при мышечной деятельности

Энергию для мышечного сокращения дает расщепление аденозинтрифосфата (АТФ). Так как запасы АТФ в мышцах невелики и достаточны для обеспечения высокоинтенсивной работы в течение 1-2 с, для продолжения мышечного сокращения необходим ресинтез АТФ. Восстановление АТФ происходит с помощью трех различных, но тесно взаимосвязанных энергосистем: фосфагенной, гликоли-тической и окислительной. В зависимости от интенсивности и продолжительности выпол-

няемой физической нагрузки вклад в энергообеспечение вышеперечисленных механизмов энергопродукции существенно отличается .

Фосфагенная энергетическая система (система АТФ-креатинфосфат) использует для ре-синтеза АТФ энергию, высвобождающуюся при расщеплении креатинфосфата (КФ). Данный путь энергообразования обеспечивает быстрое восстановление АТФ, однако запасы КФ ограничены и достаточны для удовлетворения энергетических потребностей мышц лишь в течение 315 с интенсивной физической нагрузки. Фосфа-генная система в значительной степени определяет спортивную результативность в видах спорта с кратковременными одиночными или ограниченным числом повторных интенсивных мышечных сокращений (в частности, тяжелая атлетика, метание, прыжки и др.) . Ранее предполагалось, что на начальном этапе высокоинтенсивной мышечной работы ресинтез АТФ происходит исключительно за счет расщепления КФ. В настоящее время доказано, что при интенсивных физических нагрузках активация гликолиза происходит достаточно быстро и считается, что при максимальных нагрузках система АТФ-креатинфосфат доминирует в доле общей продукции АТФ в течение 5-6 с, а максимальная скорость распада КФ наблюдается на 1,3 с с последующим постепенным уменьшением .

Поскольку энергетическая мощность фос-фагенной системы зависит от концентрации КФ, способность спортсменов к быстрому восстановлению запасов КФ важна для спортивной результативности. Исследования с использованием метода 31Р-магнитно-резонансной спектроскопии показали, что практически полное пополнение запасов КФ занимает 5-15 мин в зависимости от степени уменьшения его количества, выраженности метаболического ацидоза и типа мышечных волокон. .

Лактатная (гликолитическая) система обеспечивает медленное восстановление АТФ в анаэробных условиях за счет энергии расщепления глюкозы (выделяемой из гликогена) реакцией гликолиза с образованием молочной кислоты (лактата). Особое значение этот путь энергообразования имеет при продолжительной физической нагрузке высокой интенсивности, продолжающейся до 1-2 мин (например, при беге на средние дистанции), а также при резком увеличении мощности более длительной и менее напряженной работы (ускорения при беге на длинные дистанции) и при недостатке кислорода во время выполнения статической работы . Лактатная система мене эффективна по сравнению с аэробным механизмом по количеству образующейся энергии, к тому же высвобождение энергии при гликолизе ограничено вследствие ингибирования гликолитических ферментов при накоплении молочной кислоты и снижении рН, приводит к уменьшению ресинтеза АТФ . Ранее считалось, что гликолиз начинается после истощения запасов КФ. В настоящее время результаты многих исследований показали, что ресинтез АТФ посредством гликолиза при интенсивной мышечной работе начинается практически немедленно после начала нагрузки и достигает максимума на 10-15 с нагрузки .

Окислительная система обеспечивает энергией работу мышц в аэробных условиях за счет реакций окисления жиров и углеводов. Для длительной физической нагрузки (бег на длинные дистанции, лыжные гонки, велогонки и др.) данный источник энерообеспечения является ведущим. Основными субстратами для аэробного метаболизма являются мышечный гликоген (хотя вклад глюкозы плазмы крови увеличивается с продолжительностью нагрузки) и свободные жирные кислоты, получаемые из запасов триглицеридов в мышцах и жировой ткани. Относительный вклад этих двух источников зависит от интенсивности и продолжительности нагрузки и от тренированности спортсмена . Во время субмаксимальной нагрузки в процесс энергообеспечения первыми включаются углеводы, текущие запасы которых ограничены (у тренированных спортсменов запасов углеводов достаточно для совершения непрерывной физической нагрузки в течение 60-90 мин), а затем жиры. Наибольший вклад жирных кислот в аэробную продукцию АТФ наблюдается при интенсивности нагрузки, составляющей 60 % от максимального потребления кислорода .

Предполагалось, что участие белков в образовании энергии во время мышечной работы незначительно. Однако результаты последних исследований показывают, что во время физической нагрузки продолжительностью не-

сколько часов вклад белков в общий энергетический метаболизм может составлять до 10-15 %, что сопровождается разрушением белковых структур преимущественно скелетной мускулатуры и обуславливает необходимость ежедневного восполнения потери белков при регулярных занятиях спортом .

Традиционно считалось, что в обеспечении работоспособности при высокоинтенсивных кратковременных физических нагрузках аэробная энергетическая система играет незначительную роль и включается в процесс энергообразования на 2-3 минуте от начала нагрузки. Последние исследования показали, что все системы энергообеспечения в той или иной степени задействованы при всех видах мышечной работы и аэробная система достаточно быстро реагирует на энергетические нужды при интенсивных нагрузках, хотя и не способна их обеспечить на начальных этапах нагрузки . Проведя анализ результатов более 30 исследований, оценивающих вклад анаэробной системы во время максимальных нагрузок, Gastin показал, что продолжительность максимальной физической нагрузки, при которой наблюдается равный вклад в энергопродукцию аэробных и анаэробных энергетических систем, находится в промежутке между 1 и 2 мин, и составляет в среднем около 75 с .

Методы оценки систем энергообеспечения и расхода энергии

Аэробный путь высвобождения энергии при окислении углеводов и жиров можно оценить количественно, так как есть прямая корреляция между потреблением О2 и общей аэробной продукцией АТФ . Использование метода непрямой калориметрии и определение дыхательного коэффициента (отношение выделенного СО2 к поглощенному О2), характеризующего вид окисленного субстрата (углеводы, жиры или белки), с последующим определением расхода энергии обеспечивает достаточно точную оценку аэробной энергопродукции. Ограничения использования данного метода связаны с тем, что при выполнении физического упражнения высокой интенсивности количество СО2, выделяемого легкими, может не соответствовать производимому в тканях, и таким образом его можно считать достаточно надежным только при выполнении упражнений умеренной интенсивности. К тому же вследствие того, что белки в организме окисляются не полностью, на основании дыхательного коэффициента невозможно точно определить величину использования белков .

Важным показателем мощности аэробных процессов является максимальное потребление кислорода (МПК) - предельная величина поступления в организм кислорода за 1 мин.

МПК выражается в литрах в минуту и может быть определено с помощью субмаксимальных проб (непрямой метод) и максимальных проб (прямой метод). Во время нагрузки на уровне МПК энергообеспечение организма осуществляется как аэробным, так и анаэробным путями. Поскольку анаэробное энергообеспечение ограничено, интенсивность нагрузки на уровне МПК не может поддерживаться долго (не более 5 мин). Для определения МПК прямым методом используются чаще всего велоэргометр и газоанализаторы, однако от испытуемого требуется желание выполнить работу до отказа, что не всегда достижимо. Непрямые методы определения МПК основаны на линейной зависимости МПК и ЧСС при работе определенной мощности. По мнению многих исследователей, МПК позволяет достаточно точно оценить кардиореспираторную выносливость и аэробную подготовленность, однако не является характерным показателем функциональных возможностей спортсменов при тренировке на выносливость .

Методы количественной оценки анаэробного пути энергообеспечения менее точны по сравнению с таковыми для аэробного метаболизма. Предложены многочисленные методики, однако, поскольку анаэробный продукция АТФ является внутриклеточным процессом, это затрудняет прямую оценку достоверности существующих методов. К традиционно используемым методикам оценки анаэробного энергообеспечения относят определение величины кислородного долга, измерение концентрации лактата крови и эргометрию .

Кислородный долг представляет собой повышенное по сравнению с состоянием покоя потребление кислорода, которое продолжается некоторое время после завершения физической нагрузки. Использование величины кислородного долга для оценки анаэробного пути энергообеспечения было основано на предположении, что объем кислорода, потребляемого после нагрузки, связан с метаболизмом лактата во время восстановительного периода . Ва^8Ьо с соавт. обнаружил, что использование данного метода привело к значительной переоценке вклада анаэробной системы в энергообеспечение интенсивной мышечной работы. Выявлено несоответствие между количеством потребленного в восстановительный период кислорода и накоплением и метаболизмом лактата . Было продемонстрировано, что классическое объяснение избыточного потребления кислорода слишком упрощено и сочетание целого ряда факторов, не связанных напрямую с анаэробным высвобождением энергии, обусловливает повышенную потребность в кислороде после выполнения физической работы. К числу таких факторов относят воспол-

нение запасов кислорода, содержащихся в ми-оглобине и гемоглобине и расходованных при физической нагрузке, увеличение гормональной активности (в частности, концентрации адреналина и норадреналина), повышение температуры тела, учащение дыхания и общее увеличение энергозатрат, связанное с восстановлением гомеостаза..

Концентрацию лактата в крови часто используют как критерий оценки интенсивности физической нагрузки и как показатель, отражающий анаэробный путь высвобождения энергии при мышечной работе. В покое у здорового человека концентрация лактата составляет 12 ммоль/л. У хорошо тренированных на выносливость спортсменов при длительных нагрузках низкой интенсивности показатели лактата не превышают аэробного порога (2 ммоль/л). При данной интенсивности нагрузки энергообеспечение происходит полностью аэробным путем. При повышении интенсивности нагрузки к обеспечению нагрузки подключается анаэробная система, однако, если в организме сохраняется равновесие между выработкой и элиминацией молочной кислоты, концентрация лак-тата находится в пределах 2-4 ммоль/л. Данный диапазон интенсивности называется аэробно-анаэробной транзитной зоной. Резкое увеличение концентрации лактата в крови указывает на то, что спортсмен работает в анаэробной зоне. Граница между аэробно-анаэробной транзитной зоной и анаэробной зоной называется анаэробным порогом. Обычно концентрация лактата на уровне анаэробного порога составляет 4 ммоль/л. Лактатный тест определения анаэробного порога спортсмена, основанный на зависимости между уровнем лактата в крови и интенсивностью нагрузки, используется для оценки функционального состояния спортсмена и коррекции тренировочного процесса .

Однако в настоящее время гипотеза лак-татного порога подвергается критике в связи с множеством противоречий и неточностью не-инвазивных методов определения величины анаэробного порога. Продемонстрировано, что хотя лактат крови отражает интенсивность гликолиза, он не может быть использован для точной количественной оценки продукции лактата в мышцах. В частности, было показано, что концентрация лактата в крови при физических нагрузках достоверно ниже концентрации лактата в мышцах , а измерение концентрации лактата в крови не дает информации о скорости его образования, а лишь отражает баланс между выходом лактата в кровь и его устранением из крови . В настоящее время отстаивание гипотезы лактатно-го порога продолжается, поскольку она имеет практическую ценность, позволяя оценивать

работоспособность и уровень физической подготовки спортсменов .

Эргометрические измерения часто используются как неинвазивные непрямые методы измерения мощности всех трех систем энергообеспечения и основаны на том, что вклад систем энергообеспечения зависит от интенсивности и продолжительности работы, и в данных тестах выбирается такая продолжительность нагрузки, которая максимально увеличивает вклад одной системы энергообеспечения при минимизации участия других систем . Однако особенности активации и вклада каждой энергосистемы затрудняет точную оценку энергообмена. В частности, тот факт, что гликолитический процесс, приводящий к формированию лактата, инициируется в течение первых нескольких секунд интенсивной физической нагрузки, делает невозможным различение алактаного и лактаного компонентов анаэробного метаболизма. . Также необходимо учитывать, что аэробный путь вносит значительный вклад в энергообеспечение даже при максимальной нагрузке продолжительностью 30 с .

Применение техники биопсии мышечной ткани позволило проводить непосредственные измерения уменьшения количества АТФ и КФ и накопления лактата в исследуемой мышце и, следовательно, оценить общею анаэробную продукцию энергии организма с учетом активной мышечной массы, задействованной при определенной физической нагрузке . Сложности в использовании метода связаны с вопросами репрезентативности образца мышцы и возможной недооценки участия анаэробного пути вследствие метаболических изменений, происходящих в промежуток времени между окончанием нагрузки и взятием биопсийного материала .

Особенности адаптации систем энергообеспечения и метаболизма к аэробным и анаэробным нагрузкам

Систематическая аэробная тренировка приводит к увеличению в тренированных мышцах запасов гликогена, что связано с активным использованием мышечного гликогена во время каждого тренировочного занятия и со стимулированием механизмов, обеспечивающих его ресинтез, а также увеличению количества триглицеридов. Механизмы, обеспечивающие повышенное содержание источников энергии у тренированного на развитие выносливости спортсмена, изучены недостаточно. Тем не менее выявлено, что после 8 недель занятий содержание триглицеридов в мышце увеличивается в 1,8 раза, а также происходит перераспределение вакуолей, содержащих триг-лицериды, по мышечному волокну ближе к митохондриям, что обуславливает облегчение их использования в качестве источника энергии во время физической нагрузки .

При тренировке на выносливость повышается активность многих мышечных ферментов, участвующих в окислении жиров, а также наблюдается увеличение количества свободных жирных кислот в крови, в результате экономятся запасы мышечного гликогена и отсрочивается возникновение утомления. Таким образом, увеличение аэробной выносливости мышц обусловлено увеличением способности образования энергии с большим акцентом на использование жиров для синтеза АТФ .

Тренировка анаэробной направленности повышает уровень анаэробной деятельности вследствие увеличения в большей степени силовых качеств, чем повышения эффективности функционирования анаэробных систем образования энергии. Имеется небольшое количество исследований, посвященных изучению адаптационных реакций системы АТФ-креатинфосфат на кратковременную максимальную нагрузку. Продемонстрировано, что максимальные физические нагрузки спринтерского типа (продолжительностью 6 с) способствуют повышению силовых качеств, однако практически не влияют на эффективность процесса образования энергии за счет расщепления АТФ и КФ . Вместе с тем в другом исследовании наблюдалось повышение активности ферментов фосфа-генной системы вследствие циклов тренировочных нагрузок продолжительностью 5 с .

Тренировка анаэробной направленности с циклами нагрузки продолжительностью 30 с повышает активность ряда ключевых гликоли-тических и окислительных ферментов. Показано, что активность таких гликолитических ферментов, как фосфорилаза, фосфофруктокиназа и лактатдегидрогеназа повышается на 10-25 % в результате выполнения 30-секундных циклов физической нагрузки и практически не изменяется вследствие выполнения кратковременных (6-секундных) циклов, главным образом воздействующих на систему АТФ-КФ . Однако оба вида нагрузок в одинаковой степе -ни влияли на работоспособность и интенсивность утомления, что указывает на преимущественное увеличение силовых качеств, чем увеличение анаэробного образования АТФ.

Поскольку определенное количество энергии, необходимой для выполнения кратковременных нагрузок продолжительностью не менее 30 с, обеспечивается за счет окислительного метаболизма, кратковременные физические нагрузки спринтерского типа также увеличивают аэробные возможности мыши . Таким образом, помимо увеличения силы, повышение эффективности мышечной деятельности и задержка возникновения утомления при тренировочных нагрузках анаэробной направленности могут быть обусловлены улучшением аэробных возможностей мышц.

Особое значение имеет изучение изменений метаболизма и энергообеспечения при возникновении синдрома перетренированности у спортсменов. Это связано с тем, что перетренированность не только приводит к снижению физической работоспособности, но и к негативному влиянию на другие системы организма, в частности, снижению иммунитета и подверженности инфекционным заболеваниям верхних дыхательных путей, а также с тем, что для устранения перетренированности необходимо прекращение тренировок на срок от нескольких недель до нескольких месяцев .

В настоящее время единственным диагностическим критерием развития перетренированности является снижение физической работоспособности спортсмена, и актуальным является разработка достаточно информативных показателей для прогнозирования возникновения данного синдрома и его диагностики на начальных этапах развития. Среди существующих в настоящее время гипотез развития перетренированности аспекты изменения метаболизма и энергообмена занимают важное место. В частности, углеводная гипотеза объясняет развитие перетренированности тем, что при утомлении возникает преходящая гипогликемия, связанная с истощением запасов гликогена мышц и печени, которая усугубляется в случае недостаточного потребления углеводов с пищей. Выявлено, что гипогликемия при физической нагрузке носит более выраженный характер у перетренированных спортсменов , в то время как увеличение лактата может быть невысоким , что указывает на незначительное участие гликолиза в метаболизме скелетных мышц у таких спортсменов. Однако хотя при перетренированности спортсмены имеют более значительное снижение запасов гликогена при продолжительных нагрузках, наблюдается достаточное восстановление запасов гликогена в период между нагрузками . Предполагается, что повторяющееся истощение запасов гликогена может приводить к изменению других метаболических путей, участвующих в энергообеспечении мышечной нагрузки, в частности, к увеличению окисления аминокислот с разветвленной цепью (лейцин, изолейцин, валин), изменение метаболизма которых связывают с возникновением процессов утомления в центральной нервной системе .

В настоящее время в качестве биохимических маркеров для диагностики синдрома перетренированности и оценки изменения систем энергообеспечения, помимо определения увеличения лактата крови, предлагается использовать следующие параметры: увеличение в крови концентрации мочевины, снижение глюкозы и глютамина, а также уменьшение коэффициента соотношения концентрации свободного

триптофана к концентрации аминокислот с разветвленной цепью. Однако ни один из вышеперечисленных параметров не может служить стандартом диагностики, что диктует необходимость дальнейшего изучения изменений метаболизма при развитии синдрома перетренированности .

Заключение

При интенсивной физической нагрузке ре-синтез АТФ в мышцах происходит в анаэробных условиях за счет расщепления КФ и гликолиза, а в аэробных условиях за счет реакций окисления углеводов, жиров и белков. Анализ литературных данных демонстрирует, что все три системы энергообеспечения в той или иной степени активированы при всех видах мышечной работы, однако относительный вклад каждой из систем зависит от интенсивности и продолжительности выполняемой физической нагрузки. Показано, что хотя анаэробные механизмы в значительной степени обеспечивают ресинтез АТФ при высокоинтенсивных и кратковременных физических нагрузках, аэробная энергетическая система также играет значительную роль в обеспечении работоспособности при таких нагрузках. Существующие методы оценки систем энергообеспечения (непрямая калориметрия, определение максимального потребления кислорода) позволяют достаточно точно оценить аэробный путь высвобождения энергии. В то же время традиционно используемые методики оценки анаэробного энергообеспечения (определение величины кислородного долга, измерение концентрации лактата крови и эргомет-рия) являются менее точными. При адаптации к аэробным нагрузкам в тренированных мышцах происходит увеличение запасов гликогена и триглицеридов и усиление процессов окисления жиров. Тренировка анаэробной направленности повышает физическую работоспособность преимущественно вследствие развития силовых качеств. При развитии перетренированности у спортсменов наблюдается гипогликемия при незначительном увеличении лактата крови, а также усиление процессов окисления аминокислот с разветвленной цепью и последующим развитием центрального утомления.

Дальнейшее изучение взаимодействия основных систем энергообеспечения и их роли в развитии изменений функционального состояния спортсменов позволит разработать универсальные критерии оценки эффективности тренировочного процесса, обосновать необходимость назначения средств фармакологической поддержки, а также выявить информативные биохимические маркеры для диагностики патологических изменений организма при интенсивных физических нагрузках.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Солодков, А. С. Физиология человека. Общая. Спортивная. Возрастная / А. С. Солодков, Е. Б. Сологуб. - М: Олимпия Пресс, 2005. - 528 с.

2. Medbo, J. I. Effect of training on the anaerobic capacity / J. I. Medbo, S. Burgers // Med Sci Sports Exerc. - 1990. - Vol. 22. - P. 501-507.

3. Active and passive recovery and acid-base kinetics following multiple bouts of intense exercise to exhaustion / J. C. Siegler // Int J Sport Nutr Exerc Metab. - 2006. - Vol. 16. - P. 92-107.

4. Greenhaff, P. L. Interaction between aerobic and anaerobic metabolism during intense muscle contraction / P. L. Greenhaff, J. A Timmons // Exercise and Sport Sciences Reviews. - 1998. - Vol. 26. - P. 1-36.

5. Interaction among skeletal muscle metabolic energy systems during intense exercise / J. S. Baker // J. Nutr Metab. - 2010. - P. 3-17.

6. Metabolic response of type I and II muscle fibers during repeated bouts of maximal exercise in humans / A. Casey // American Journal of Physiology. - 1996. - Vol. 271, № 1. - P. 38-43.

7. Westerblad, H. Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability / H. Westerblad, J. D. Bruton, A. Katz // Exp. Cell Res. - 2010. - Vol. 18. - P. 93-99.

8. Katz, A. Regulation of glucose utilization in human skeletal muscle during moderate exercise / A. Katz, K. Sahlin, S. Broberg // Am. J. Physiol. - 1991. - Vol. 3. - P. 411-416.

9. Sahlin, K. Energy supply and muscle fatigue in humans / K. Sahlin, M. Tonkonogi, K. Soderlund // Acta Physiol Scand. - 1998. - Vol. 3. - P. 261-267.

10. Gastin, P. B. Energy system interaction and relative contribution during maximal exercise / P. B. Gastin // Sports Med. - 2001. - Vol. 31, № 10. - P. 725-741.

11. Уилмор, Дж. Х. Физиология спорта и двигательной активности / Дж. Х. Уилмор, Д. Л. Костил. - Киев: Олимпийская литература, 1997. - 504 с.

12. Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans / J Bangsbo // J Physiol. - 1990. - Vol. 422. - P. 539-559.

13. Vandewalle, H. Standard anaerobic exercise tests / H. Vande-walle, G. Peres, H. Monod // Sports Med. - 1987. - Vol. 4. - P. 268-289.

14. Янсен, П. ЧСС, лактат и тренировки на выносливость / Петер Янсен // Мурманск: Тулома, 2006. - 160 с.

15. Jacobs, I. Lactate in blood, mixed skeletal muscle and FT or ST fibres during cycle exercise in man // I. Jacobs, P. Kaiser // Acta Physiol Scand. - 1982. - Vol. 114. - P. 461-467.

16. Tesch, P. A. Lactate accumulation in muscle and blood during submaximal exercise // P. A. Tesch, W. L. Daniels, D. S. Sharp // Acta Physiol Scand. - 1982. - Vol. 114. - P. 4641-446.

17. The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sport science / V. L. Billat // Sports Med. - 2005. - Vol. 33. - P. 407-426.

18. Robergs, R. A. Biochemsitry of exercise-induced metabolic acidosis / R. A. Robergs, F. Ghiasvand, D. Parker // American Journal of Physiology: Regulatory, Integrative and Comparative Physiology. - 2004. - Vol. 287. - P. 502-516.

19. Negligible direct lactate oxidation in subsarcolemmal and intermyofibrillar mitochondria obtained from red and white rat skeletal muscle / Y. Yoshida // J Physiol. - 2007. - Vol. 2. - P. 705-706.

20. Human muscle metabolism during intermittent maximal exercise / G. C. Gaitanosl // J Appl Physiol. - 1993. - Vol. 2. - P. 712-721.

21. Bangsbo, J. Quantification of anaerobic energy production during intense exercise / J. Bangsbo // Med Sci Sports Exerc. - 1998. - Vol. 1. - P. 47-52.

22. Adaptations in skeletal muscle following strength training / D. L. Costill // Journal of Applied Physiology: Respiratory Environmental Exercise Physiology. - 1979. - Vol. 46. - P. 96-99.

23. Thorstensson, A. Enzyme activities and muscle strength after sprint training in man / A. Thorstensson, B Sjodin, J. A. Karlsson. // Acta Physiol Scand. - 1975. - Vol. 94. - P. 313-318.

24. Biochemical aspects of overtraining in endurance sports / C. Peti-bois // Sports Med. - 2002. - Vol. 13. - P. 867-878.

25. Petibois, C. FT-IR spectroscopy utilization to athletes fati-gability evaluation and contro / C. Petibois, G. Cazorla, G. Deleris // Med Sci Sports Exerc. - 2000. - Vol. 32. - P. 1803-1808.

26. Snyder, A. C. Overtraining and glycogen depletion hypothesis / A. C. Snyder // Med Sci Sports Exerc. - 1998. - Vol. 30. - P. 1146-1150.

27. Bosquet, L. Blood lactate response to overtraining in male endurance athletes / L. Bosquet, L. Leger, P. Legros // Eur J Appl Physiol. - 2001. - Vol. 84. - P. 107-114.

28. Jeukendrup, A. Overtraining: what do lactate curves tell us / A. Jeukendrup, M. Hesselink // Br J Sports Med. - 1994. - Vol. 28. - P. 239-240.

29. Lehmann, M. Overtraining in endurance athlete / M. Lehmann, C. Foster J. Keul // Med Sci Sports Exerc. - 1993. - Vol. 25. - P. 854-862.

Поступила 16.05.2014

УДК 616-018.2-007.17:612.014.2

АНАТОМИЧЕСКИЕ ОСОБЕННОСТИ ВЕНОЗНОГО РУСЛА ГОЛЕНИ

(обзор литературы)

С. А. Семеняго, В. Н. Жданович Гомельский государственный медицинский университет

В ходе детального анализа отечественных и зарубежных литературных источников проведено структурирование венозной системы голени с описанием вариантов строения некоторых отделов. Также даны понятия коммуникантных и перфорантных вен, венозных синусов голени с указанием их значения для клиницистов. Описаны наиболее значимые коммуниканты и перфоранты и приведены данные по их локализации.

Ключевые слова: венозная система, перфоранты, коммуниканты, варикозное расширение вен.

ANATOMIC FEATURES OF VENOUS SYSTEM OF THE LOWER LEG

(literature review)

S. A. Semeniago, V. N. Zhdanovich Gomel State Medical University

The review gives a detailed analysis of national and foreign publications and describes the structure and variations of the venous system of the lower leg. It also gives notions and clinical importance of communicating and perforating veins and venous sinuses of the lower leg. The most significant communicating and perforating veins and their localization were described.

Key words: venous system, perforating veins, communicating veins, varicose veins.

Сегодня мы поговорим про энергообеспечение мышечной деятельности . Как вы знаете для работы любых систем нашего организма необходима энергия, давайте подробно разберемся в механизме энергообеспечение мышц.

Источником энергии в нашем организме является молекула АТФ (аденозинтрифосфат). Количество молекул АТФ ограничено, поэтому требуется постоянный их ресинтез.

Энергообеспечение мышц на деле

Достаточно теории, давайте рассмотрим энергообеспечение мышц на примере какого-нибудь вида спорта.

Расщепление креатинфосфата

Это самый первый источник восстановления молекулы АТФ. Вы сможете выполнять работу где-то 10 секунд, после 30 секунд запасы креатинфосфата снизятся до 50%. Немного поразмыслив, можно с уверенностью сказать, что этот способ энергообеспечения работает в пауэрлифтинге или тяжелой атлетике, где стоит задача поднять максимально большой вес.

Анаэробный гликолиз

Гликолиз включается в работу где-то через 30 секунд после начала подхода и может ресинтезировать энергию несколько минут. Этот бескислородный способ энергообеспечения больше заметен в бодибилдинге. Как раз быстрые мышечные волокна работают в этот момент. Быстрые мышечные волокна обладают большими размерами, это объясняет, почему бодибилдеры тренируются в такой манере.

Окисление

Окисление – аэробный (кислородный) путь получения энергии, он самый дешевый, но требует много времени, так как кислород нужно ещё получить и кроме этого его надо усвоить. Этот способ энергии можно увидеть у марафонцев. Окисление обеспечивает работу медленных мышечных волокон , марафонцы не показывают мощности, они работают в легком темпе на протяжение долгого времени, что характерно для медленных волокон.

P.S.

Я думаю сегодняшней информации будет достаточно. Вы поняли, как работает система энергообеспечения мышечной деятельности. Конечно возникнет много вопросов, но это уже другие темы, которые были здесь затронуты. Ждите новых статей.

Поделиться: