Энергетическое обеспечение мышечной деятельности. Биоэнергетика мышечной деятельности в скалолазании Зоны энергообеспечения

Конспект по мотивам «ЧСС, лактат и тренировки на выносливость» (Янсен Петер)

Работающим мышцам необходима энергия. Аденозинтрифосфат (АТФ) — это универсальный источник энергии. АТФ распадается до аденозиндифосфата (АДФ). При этом высвобождается энергия.

АТФ → АДФ + энергия

При интенсивной мышечной работе запасы АТФ расходуются за 2 секунды. АТФ непрерывно восстанавливается (ресинтез) из АДФ. Выделяют три системы ресинтеза АТФ:

  • фосфатную,
  • лактатную,
  • кислородную.

Фосфатная система ресинтеза АТФ

Быстрый ресинтез АТФ в мышцах идет за счет креатинфосфата (КрФ). Запаса КрФ в мышцах хватает на 6-8 секунд интенсивной работы.

КрФ + АДФ → АТФ + креатин

При максимальной нагрузке фосфатная система истощается в течение 10 секунд. В первые 2 секунды расходуется АТФ, а затем 6-8 секунд — КрФ. Через 30 секунд после физической нагрузки запасы АТФ и КрФ восстанавливаются на 70%, а через 3-5 минут — полностью.

Фосфатная система важна для взрывных и кратковременных видов физической активности — спринтеры, футболисты, прыгуны в высоту и длину, метатели диска, боксеры и теннисисты.

Для тренировки фосфатной системы непродолжительные энергичные упражнения чередуют с отрезками отдыха. Отдых должен быть достаточно длительным, чтобы успел произойти ресинтез АТФ и КрФ (график 1).

Через 8 недель спринтерских тренировок количество ферментов, которые отвечают за распад и ресинтез АТФ, увеличится. После 7 месяцев тренировок на выносливость в виде бега три раза в неделю запасы АТФ и КрФ вырастут на 25-50%. Это повышает способность спортсмена показать результат в видах деятельности, которые длятся не более 10 секунд.

Фосфатная система ресинтеза АТФ называется анаэробной и алактатной , потому что не нужен кислород и не образуется молочная кислота.

Кислородная система ресинтеза АТФ

Кислородная (аэробная) система ресинтеза АТФ поддерживает физическую работу длительное время и важна для спортсменов на выносливость. Энергия выделяется при взаимодействие углеводов и жиров с кислородом. Окисление углеводов требует на 12% меньше кислорода по сравнению с жирами. При физических нагрузках в условиях нехватки кислорода энергообразование происходит в первую очередь за счет окисления углеводов. После исчерпания запаса углеводов к энергообеспечению подключаются жиры. Запаса углеводов (гликоген в печени и мышцах) хватает на 60-90 минут работы субмаксимальной интенсивности. Запасы жиров в организме неисчерпаемы.

Важно!!! Тренированный спортсмен будет использовать больше жиров и меньше углеводов по сравнению с неподготовленным человеком. Тренированный человек экономит углеводы, запасы которых небезграничны.

Окисление жиров:

Жиры + кислород

Углекислый газ выводится из организма легкими.

Распад углеводов (гликолиз):

Первая фаза: глюкоза + АДФ → АТФ + молочная кислота

Вторая фаза: молочная кислота + кислород + АДФ → АТФ + углекислый газ + вода

Чем больше кислорода способен усвоить организм человека, тем выше аэробные способности. Высокие показатели лактата во время нагрузки указывают на несостоятельность аэробной системы. Тренировки могут улучшить аэробные способности на 50%. При недостатке кислорода молочная кислота накапливается в работающих мышцах, что приводит к ацидозу (закислению) мышц. Болезненность мышц — это характерная черта нарастающего ацидоза (боль в ногах у велосипедиста или бегуна, боль в руках у гребца).

Важно!!! Ацидоз начинается на ускорение. При нарастающем ацидозе спортсмен не способен поддерживать тот же уровень нагрузки. Спортсмен, способный оттягивать момент ацидоза, с большей вероятностью выиграет гонку.

Лактатная система ресинтеза АТФ

Прсле определенного уровня интенсивности работы организм переходит на бескислородное (анаэробное) энергообеспечение, где источник энергии — исключительно углеводы. Интенсивность мышечной работы резко снижается из-за накопления молочной кислоты (лактата).

Глюкоза + АДФ → молочная кислота + АТФ

Ресинтез АТФ идет за счет лактатного механизма:

  • несколько минут в начале любого упражнения пока легкие, сердце и системы транспорта кислорода не приспособятся к потребностям нагрузки;
  • при беге на 100, 200, 400 и 800 м, а также во время любой другой интенсивной работы, длящейся 2-3 мин;
  • в беге на 1500 м вклад аэробного и анаэробного энергообеспечения — 50/50;
  • при кратковременном увеличении интенсивности работы — при рывках, преодолении подъемов, во время финишного броска, например, на финише марафона или велогонки.

Лактат может быть в 20 раз выше нормы. Максимальная концентрация молочной кислоты достигается в беге на 400 м. С увеличением дистанции концентрация лактата снижается (График 2).

Отрицательные эффекты высокого лактата

  • Мышечная усталость. Если начать длительный бег в высоком темпе или рано приступить к финишному рывку, мышечная усталость, вслед за ростом концентрации лактата, не даст спортсмену выиграть гонку.
  • Ацидоз (закисление) мышечных клеток и межклеточного пространства. Может потребоваться несколько дней, чтобы ферменты снова нормально функционировали и аэробные возможности полностью восстановились. Частое повторение интенсивных нагрузок (без достаточного восстановления) приводит к перетренированности.
  • Повреждение мышечных клеток. После напряженной тренировки в крови повышается уровень мочевины, креатинкиназы, аспартатаминотрансферазы (АсАТ) и аланинаминотрансферазы (АлАТ). Это указывает на повреждение клеток. Чтобы показатели крови снова пришли в норму требуется от 24 до 96 ч. В это время тренировки должны быть легкими — восстановительными.
  • Нарушение мышечного сокращения влияет на координацию. Тренировки на технику не следует проводить если лактат выше 6-8 ммоль/л.
  • Микроразрывы. Незначительные повреждения мышц могут стать причиной травмы при недостаточном восстановление.
  • Замедляется образование КрФ. Лучше не допускать высоких показателей лактата во время спринтерских тренировок.
  • Снижается утилизация жира. При истощение запасов гликогена энергообеспечение окажется под угрозой, поскольку организм будет не способен использовать жир.

На нейтрализацию половины накопившейся молочной кислоты требуется около 25 минут; за 1 час 15 минут нейтрализуется 95% молочной кислоты. Активное восстановление («заминка») очень быстро снижает лактат. В восстановительной фазе лучше выполнять непрерывную, а не интервальную работу (График 3).

Энергетические запасы

Важно!!! Запаса АТФ хватает на 2-3 секунды работы максимальной мощности. Креатинфосфат (КрФ) расходуется через 8-10 секунд максимальной работы. Гликогеновые запасы заканчиваются через 60-90 минут субмаксимальной работы. Запасы жира практически неисчерпаемы (График 4).

Таблица 1.1 Порядок подключения энергетических систем при физической нагрузке максимальной мощности. Анаэробный — без участия кислорода; аэробный — с участием кислорода. Алактатный — молочная кислота не вырабатывается; лактатный — молочная кислота вырабатывается.

Продолжительность нагрузки

Механизмы энергообеспечения

Источники энергии

Примечания

1-5 секунд

6-8 секунд

Анаэробный алактатный (фосфатный)

9-45 секунд

Анаэробный алактатный (фосфатный) + анаэробный лактатный (лактатный)

АТФ, КрФ + гликоген

Большая выработка лактата

45-120 секунд

Анаэробный лактатный (лактатный)

Гликоген

По мере увеличения продолжительности нагрузки выработка лактата снижается

2-4 минуты

Аэробный (кислородный) + анаэробный лактатный (лактатный)

Гликоген

Аэробный

Гликоген + жирные кислоты

Чем выше доля жирных кислот в энергообеспечении, тем дольше продолжительность нагрузки

Важно!!! В 1 г жира 9 ккал, а в 1 г углеводов 4 ккал. Жиры не связаны с водой, а углеводы связаны с большим количеством воды. Если запасы в виде жиров заменить на углеводы, то масса нашего тела увеличится вдвое. В весовом исчислении жиры являются эффективным источником энергии. Поэтому перелетные птицы запасают исключительно жиры. Жир — идеальный источник энергии для продолжительных нагрузок при ограниченном поступление пищи.

У спортсменов на выносливость показатель жира в среднем 10%. Это важный показатель физического состояния спортсмена. У каждого спортсмена существует свой идеальный процент жира. Идеальный процент жира находиться в диапазоне от максимально низкого (4-5%) до относительно высокого (12-13%).

Запаса углеводов хватает в среднем на 95 минут марафонского бега, жировых запасов хватит на 119 часа. Но чтобы получить энергию из жира требуется больше кислорода. Из углеводов можно синтезировано больше АТФ в единицу времени. Поэтому углеводы — это главный источник энергии во время интенсивных нагрузок. Когда заканчиваются запасы углеводов, вклад жира в энергообеспечение работы возрастает, а интенсивность нагрузки снижается. В марафоне это происходит в районе 30-километровой отметки — после 90 минут бега.

В. Н. Селуянов
ПНИЛ, РГАФК, Москва

Соревновательная деятельность в борьбе продолжается 5-9 мин. и завершается, как правило, предельным утомлением спортсмена. В циклических видах спорта такая деятельность может быть сопоставлена с соревновательной деятельностью бегуна на 1500-3000 м. Поскольку этот вид деятельности хорошо изучен в физиологии, то достаточно легко найти экспериментальные данные и физиологические механизмы, объясняющие результативность такой деятельности.

Например, возьмем данные B. Saltin et al. (Onset of exercise // Simposium. — Toulouse. — 1972. — P. 63-76.) В этой работе представлены данные об изменении АТФ, КрФ, гликогена, лактата в мышце (латеральной головке четырехглавой мышцы бедра), и лактата в крови при выполнении педалирования на велоэргометре с мощностью МПК.

Механизм энергообеспечения такой работы может быть описан следующим образом. В начале, для преодоления внешнего сопротивления, которое составляет около 40 % от МАМ, должны быть рекрутировано около 40 % МВ. Эти мышечные волокна являются окислительными. В них начинается трата молекул АТФ и ресинтез их за счет энергии молекул КрФ. Свободные Кр и неорганический фосфат активизируют деятельность гликолиза и окисления жиров одновременно. Через 10-15 с после начала упражнения запасы АТФ и КрФ в рекрутированных МВ значительно снижаются, поэтому мощность работы этих мышечных волокон падает в 2-3 раза. Это заставляет спортсмена рекрутировать новые МВ в количестве, необходимом для поддержания заданной мощности. Следовательно, следующие 10-15 с работа поддерживается за счет аэробных процессов в ранее рекрутированных МВ и энергии АТФ и КрФ в новых МВ. Затем, описанный механизм рекрутирования МВ, продолжает развиваться. Начинают подключаться к работе гликолитические МВ, которые после исчерпания запасов АТФ и КрФ начинают работать в анаэробном гликолизе с образованием лактата и ионов водорода. По данным B. Saltin et al. (1972) интенсивный рост концентрации лактата в мышце начинается после минуты работы. Продолжительность работы рекрутированных гликолитических МВ не превышает одной минуты, поскольку закисление МВ приводит к потере силы и мощности их функционирования. Поэтому работа с заданной мощностью будет продолжаться до тех пор, пока есть что рекрутировать. В момент исчерпания всех МВ заданная мощность уже не может больше поддерживаться. В этот момент мышцы предельно закисляются, потребление кислорода, ЧСС и легочная вентиляция достигаю также предельных величин. Испытуемый испытывает тяжелое физиологическое состояние и отказывается от продолжения работы. Если работа продолжалась 6 мин., то за это время потребление кислорода мышцами составит: V(О 2) АнП × 6 мин. = 4 л/мин х 6 мин. = 24 л/мин. Если мощность работы составила 400 Вт или 5,3 л О 2 /мин, то кислородный запрос упражнения составит 5,3 × 6 мин. = 32 л О 2 . Дефицит кислорода составил 8 л, из него 2-3 л приходится на АТФ и КрФ, а на анаэробный гликолиз 5-6 л.

Следовательно, основным механизмом энергообеспечения является аэробный (24/32 × 100 % = 75 %, алактатный 2/32 × 100 % = 6,3 %, анаэробный гликолиз 6/32 × 100 % = 18,7 %). Эта оценка в целом согласуется с данными многих авторов.

Заметим также, что с ростом потребления кислорода на уровне АнП, когда он приближется по своей величине к МПК, наблюдается увеличение продолжительности работы на уровне МПК, снижается степень закисления мышц и крови. В целом вклад в запрос кислорода аэробных процессов растет и может достигать 90 %.

Отсюда следует приоритет в развитии аэробного механизма энергообеспечения у спортсменов, выполняющих предельную мышечную работу в пределах 5-9 мин.

Единственным специалистом, результаты которого вошли в противоречие с общеустановленными представлениями является В. В. Шиян (1997). На основании исследования соревновательной деятельности различных видов борьбы он пришел к выводу о приоритете анаэробного механизма энергообеспечения.

На основе анализа биоэнергетических характеристик у спортсменов различных видов спорта им было установлено, что «у борцов существенно меньше показатели бионергетических функций, чем у представителей других видов спорта». Например, борцы имеют аэробную мощность (МПК) 58 мл/мин/кг, тогда как у бегунов на дистанцию 800 м и более длинные более 70 мл/мин/кг. Автор предположил, что отставание в развитии борцов связано с отставанием в теории и методике подготовки высококвалифицированных борцов по сравнению с другими видами спорта.

Эта аргументация поверхностная, а обнаруженное явление легко объяснить, если придерживаться концепции о периферическом лимитирующем факторе МПК. В этом случае потребление кислорода определяется массой митохондрий потребляющих кислород в активных мышцах ног, сердце и дыхательных мышц. При педалировании на велоэргометре основную работу выполняют только мышцы ног, поэтому при делении на массу тела, в которую входят у борцов существенно гипертрофированные и массивные мышцы спины, живота и рук, при равных абсолютных величинах МПК относительные величины МПК у борцов окажутся ниже при сравнении с представителями других видов спорта без существенной гипертрофии мышц пояса верхних конечностей.

Другим аргументом В. В. Шияна стали данные факторного анализа, из которых следовало, что вклад в общую дисперсию аэробных способностей борцов составил только 10 %, а основная дисперсия пришлась на анаэробные возможности — более 90 %. Следовательно, «подготовка борца высокой квалификации (особенно этап подготовки к соревнованиям), должна быть направлена на максимальное развитие преимущественно анаэробноых возможностей спортсменов». Такая аргументация не выдерживает следующей критики. При изучении однородных выборок спортсменов наиболее важные для достижения высоких спортивных результатов показатели у всех спортсменов должны быть примерно равными, следовательно, должны мало варьировать. Показатели, которые существенно варьируют, не имеют принципиального значения для данного вида спорта. Из этого следует, что именно анаэробные показатели не имеют принципиального значения при оценке уровня подготовленности борцов высокой квалификации.

Подтверждение нашей аргументации можно найти при анализе соревновательной деятельности борцов. Например, по данным В. В. Шияна (1997) активность победителей и надежность технических действий выше чем у побежденных на 30-50 %, а закисление у победителей либо меньше, либо статистически достоверно не различались (рН = 7,158, б = 0,077). Из этого следует, что более высокая активность борцов победителей определялась их более высокой аэробной подготовленностью.

Другим важным аргументом в пользу важности аэробной подготовленности борцов являются данные о тестировании и норме специальной выносливости борцов. В. В. Шиян (1997) использовал в своих исследованиях тест — педалирование на велоэргометре, три раза по одной минуте предельной нагрузки. После тестирования на 3-5 мин. бралась кровь из мочки уха, для определения рН. По данным тестирования по формуле определяли гликолитическую эффективность:

АнГЭ = ΣАi/(100 х ΔpH)

Где ΣАi сумма трех работ, выполненных в одноминутных предельных упражнениях, ΔpH — изменение степени закисления крови по данным анализа крови до и после тестирования.

Аналогичная формула использовалась для оценки специальной выносливости (коэффициент специальной выносливости):

КСВ = 100/(Σti х ΔpH),

Σti — сумма трех работ, выполненных в виде серий по 15 бросков чучела, с.

Анализ этих уравнений показывает, что при равном объеме выполненной работы уменьшение степени закисления крови ведет к росту специальной выносливости. Следовательно, показатели АнГЭ и КСВ характеризуют уровень аэробных возможностей спортсмена. К сожалению результаты, получаемые по этим формулам, получили некорректную интерпретацию. В. В. Шиян (1997) предположил, что одноминутная работа связана преимущественно с анаэробным механизмом энергообеспечения — анаэробным гликолизом, поэтому показатель КСВ должен характеризовать анаэробную гликолитическую мощность. При такой интерпретации ведущим фактором роста специальной выносливости становится анаэробный гликолиз.

Вывод

Соревновательная деятельность в борьбе самбо и дзюдо, продолжающаяся около 5 мин., требует энергообеспечения преимущественно за счет аэробного механизма, который необходим как для поддержания высокой интенсивности борьбы, так и для случаев проведения высокоинтенсивных двигательных действий связанных с рекрутированием гликолитических мышечных волокон, с образованием молочной кислоты, здесь аэробные возможности необходимы для устранения лактата и ионов водорода в митохондриях окислительных мышечных волокнах активных скелетных мышц, сердце и дыхательной мускулатуре в моменты снижения интенсивности двигательных действий в схватке.

Литература

В. В. Шиян Совершенствование специальной выносливости. — М.: ФОН, 1997. — 166 с.

B. Saltin et al. Onset of exercise //Simposium. — Toulouse. — 1972. — P. 63-76.

(по Е.С. Григоровичу, В.А. Переверзевой, 2008)

3.1. Механизмы энергообеспечения организма человека при мышечной работе

Любая мышечная деятельность сопряжена с использованием энергии, непосредственным источником которой является АТФ (аденозинтрифосфорная кислота ). АТФ называют универсальным источником энергии. Все остальные энергопроцессы направлены на воспроизводство и поддержание её уровня.

АТФ во время мышечной работы восстанавливается с такой же скоростью, как и расщепляется. Восстановление АТФ может осуществляться двумя путями – анаэробным (в ходе реакции без кислорода) и аэробным (с различным уровнем потребления кислорода) с участием специального энергетического вещества креатинфосфата . Готового для ресинтеза АТФ креатинфосфата хватает только на 10-15 секунд мощной работы. В таких условиях ресинтез АТФ идёт при остром дефиците кислорода (например, вот почему невозможно в спринтерском темпе пробежать 800 м). Мышечная работа очень высокой интенсивности осуществляется в анаэробном режиме, когда ресинтез АТФ совершается при остром дефиците кислорода. В этом случае организм добывает для работы АТФ, используя процесс гликолиза – превращения углеводородов, в результате которого вновь происходит ресинтез АТФ, и образуются конечные кислые продукты – молочная (лактат) и пировиноградная кислоты.

Гликолиз обеспечивает работоспособность организма в течение 2-4 минут, т.е. креатинфофатный механизм и гликолиз дают энергии совсем немного.

При высокой функциональной напряжённости в мышцах уменьшается содержание энергонасыщенных углеводов (гликогена и фосфорных – креатинфосфата), в крови снижается уровень глюкозы, в печени – гликогена. Если нагрузка продолжительная, то источник энергии восполняется за счёт повышения интенсивности освобождения жирных кислот из жировой ткани и их окисления в мышцах.

Аэробный механизм (когда запросы организма в кислороде полностью удовлетворяются) окисления питательных веществ с образованием креатинфосфата и ресинтеза АТФ является наиболее эффективным и может обеспечивать работоспособность человека в течение нескольких часов. В этих условиях организм добывает энергии АТФ во много раз больше, чем при гликолизе.

Следует отметить, что в клетках все превращения углеводов, жиров, органических кислот и, в последнюю очередь, белков на пути к ресинтезу АТФ проходят в митохондриях . В обычных условиях работает часть митохондрий, но по мере увеличения потребности мышц в энергии в процессе ресинтеза макроэнергетических соединений включается всё больше «подстанций».

Способность человека к ресинтезу АТФ, мощность и ёмкость каждого уровня индивидуальны, но диапазон всех уровней может быть расширен за счёт тренировки. Если запросы возрастают, в клетках увеличивается количество митохондрий, а при ещё большей потребности – убыстряется темп их обновления. Такой процесс повышает возможность использования кислорода в окислительных процессах и окисления жиров в большом количестве.

Важную роль в поддержании уровня кислорода в мышечных волокнах (особенно в красных – медленных) играет белок миоглобин , который содержит железо и по строению и функциям близок к гемоглобину.

Пример:

У тюленей массой 70 кг с миоглобином связано 2530 мл кислорода, что позволяет ему находиться под водой до 14 минут. У человека с той же массой с миоглобином связано 335 мл кислорода.

При выполнении физической нагрузки организму необходимо обеспечить работающие мышцы достаточным количеством кислорода для поддержания высокого уровня окислительных процессов, поставляющих энергию. Другими словами, нужно перестроить работу кардиореспираторной системы на режим увеличения вентиляции лёгких и возрастания объёмной скорости кровотока, прежде всего, в работающих органах (скелетных мышцах, сердце и др.) для оптимального удовлетворения их энергетических потребностей. Так, у тренированных лиц приспособление сердца к нагрузке происходит в большей степени за счёт повышения ударного объёма и в меньшей – за счёт увеличения частоты сердечных сокращений (ЧСС).

text_fields

text_fields

arrow_upward

Первичным источником энергии для сокращения мышц и протека­ния других биохимических процессов служит аденозинтрифосфорная кислота (АТФ) , которая находится в клеточных структурах. При расщеп­лении одной грамм-молекулы АТФ на аденозиндифосфорную и фосфор­ную кислоты освобождается 10 ккал. Распад АТФ происходит при возбуж­дении мышечного волокна под действием нервных импульсов.

Запасы АТФ в мышцах незначительны и чтобы поддерживать актив­ ность мышц необходимо непрерывное пополнение (ресинтез) АТФ. Одним из способов ресинтеза АТФ является анаэробный (безучастия кислорода воздуха) механизм энергообеспечения.

Анаэробный ресинтез осуществляется, во-первых, за счет распада содержащегося в мышцах вещества — креатинфосфата, и, во-вторых, при расщеплении углеводов — запасов гликогена и поступающей с кровью глю­козы. Анаэробное расщепление углеводов называется гликолизом.

Энергообеспечение за счет креатинфосфата развертывается очень быстро, обеспечивает большую мощность работы, но длится всего не­сколько секунд, так как его запасы невелики. Гликолиз развертывается медленнее , в течение 2-3 мин интенсивной работы, обеспечивает бблыпую ее продолжительность, но из-за ограниченности запасов углеводов и нако­пления в крови недоокисленных продуктов распада (молочной кислоты) может осуществляться относительно недолго. Продукты распада окисля­ются в дальнейшем при достаточном поступлении кислорода после окон­чания работы или снижения ее интенсивности.

Таким образом, высокоинтенсивная мышечная деятельность прохо­дит при недостатке кислорода в течение ограниченного времени.

Аэробный механизм энергообеспечения мышечной деятельности

text_fields

text_fields

arrow_upward

Аэробный механизм ресинтеза АТФ заключается в расщеплении уг­леводов с участием кислорода воздуха. Он более эффективен по сравне­нию с анаэробным, так как приводит к образованию большего числа моле­кул АТФ при окислении одного и того же количества углеводов. Кроме то­го, аэробному окислению могут подвергаться белки и жиры, причем по­следние, как правило, имеются в организме в необходимом количестве.

Время развертывания аэробного механизма энергообеспечения со­ставляет 3-4 мин, у тренированных людей несколько меньше. Питательные вещества и недоокисленные ранее продукты при достаточном поступлении кислорода распадаются до углекислого газа и воды.

Продолжительность работы в аэробном режиме ограничена в основ­ном запасами питательных веществ в организме и может достигать не­скольких часов, однако интенсивность ее относительно невысока. Отличи­тельная особенность аэробного механизма энергообеспечения заключается в том, что в доставке кислорода к мышцам участвуют дыхательная, сер­дечно-сосудистая системы и система крови, от состояния которых зависит интенсивность и длительность выполняемой работы. Показатели мышеч­ной деятельности зависят также от способности мышечных клеток исполь­зовать поступающий к ним кислород для образования АТФ.

В большинстве случаев двигательная деятельность требует быстрого развертывания и протекает с меняющейся интенсивностью. При этом энер­гообеспечение не может осуществляться только за счет экономичного аэробного механизма.

Отсюда следует, что даже при подготовке к длительной работе невысокой и средней интенсивности надо уделять должное внимание совершенствованию анаэробного механизма энергообеспечения с использованием специальных методов тренировки.

Максимальное потребление кислорода, порог анаэробного обмена и кислородный долг при выполнении физических упражнений

text_fields

text_fields

arrow_upward

Для оценки подготовленности человека к физической работе различ­ной интенсивности используется ряд физиологических показателей.

К ним относятся:

  • максимальное потребление кислорода (МПК),
  • порог анаэроб­ного обмена (ПАНО),
  • кислородный долг.

Максимальное потребление кислорода

МПК — это наибольшее количество кислорода, которое может усво­ить организм в единицу времени в условиях, когда дальнейший рост ин­тенсивности нагрузки уже не вызывает его повышения. МПК является по­казателем аэробной производительности организма н связан с макси­мальным включением аэробного механизма энергообеспечения.

МПК представляет собой не только показатель тренированности человека, но и характеризует состояние его здоровья в цепом. У незанимающихся спор­том МПК находится на уровне 2-3.5 л/мин. У спортсменов высокого клас­са, тренирующихся на выносливость, МПК достигает 6 л/мин и более. По­казано, что снижение МПК ведет к развитию различных заболеваний.

Порог анаэробного обмена

ПАНО — это уровень ЧСС, при котором организм переходит от аэробного к анаэробному механизму энергообеспечения. Чем выше ПАНО, тем в большей степени работа производится за счет предпочтительных аэробных реакций.

У слабо подготовленных людей ПАНО может насту­пать уже при ЧСС 130-140 уд/мин, а у квалифицированных спортсменов, тренирующихся на выносливость — при 160-170 уд/мин. Средним считает­ся уровень 150 уд/мин.

Кислородный долг

Кислородный долг — это разница между количеством кислорода, не­обходимым для выполнения заданной работы и количеством кислорода, фактически использованным за это время. Максимальный кислородный долг отражает объем анаэробных процессов, которые могут быть развер­нуты в организме.

У незанимающихся спортом он не превышает 5 л, а у спортсменов высокого класса, специализирующихся в видах спорта, тре­бующих скоростной выносливости, достигает 25 л. Кислородный долг ли­квидируется после окончания работы.

1. Анаэробный креатинфосфатный механизм.

В достижении высоких показателей, большое значение имеют факторы энергообеспечения мышечной деятельности. При мышечном сокращении непосредственным источником энергии является расщепление АТФ (аденозитрифосфорная кислота) при этом АТФ теряет одну энергетически богатую группу и превращается в аденезиндифосфорную (АДФ) и фосфорную кислоты. В мышечных клетках запас АТФ невелик. После потери АТФ, ее запасы должны немедленно восстановится. В случае недостатка кислорода, один из путей восстановления (ресинтеза) АТФ и АДФ связан с использованием креатинфосфата (КрФ), находящегося в мышечном волокне и имеющего фосфатную группу.

КрФ + АДФ = АТФ + креатин

Анаэрбный механизм ресинтеза АТФ может работать до тех пор, пока не будет исчерпан КрФ в мышечных волокнах. Уровень запаса КрФ повышается во время спринтерских тренировок. Креатинфосфатный механизм энергообепечения быстро исчерпывается, после чего энергообеспечение идет за счет других механизмов.

2.Анаэрбный гликолитический механизм.

Другой путь ресинтеза АТФ – гликолиз. Как и креатинфосфатный механизм, он анаэробный, и может быть источником энергообеспечения лишь недолго. При гликолизе АТФ обновляется за счет ферментативного расщепления глюкозы и гликогена до молочной кислоты. Сначала углеводы расщепляются до пировиноградной кислоты. Создающиеся при этом ферментативные группы переходят в АДФ которая превращается после этого в АТФ. Пировиноградная кислота вступает в реакцию и превращается в молочную кислоту. Интенсивное накопление и создание молочного долга, при одновременном исчерпании запасов гликогена – это основной фактор, который лимитирует мышечную деятельность и сопутствует развитию усталости.

3.Аэробный механизм.

В мышцах, обновление АТФ происходит при помощи кислорода. Аэробный механизм может обеспечивать менее интенсивный процесс работы, но более длительный. Организм спортсмена в это время находится в стойком состоянии – молочная кислота не накапливается и кислородный долг не создается. Окислительная система обеспечивает мышцы энергией с помощью процессов окисления жиров и углеводов кислородом из воздуха. Углеводы являются более выгодным источником энергии, в условиях недостаточного снабжения организма кислородом, потому что для их окисления необходимо меньшее количество кислорода, чем для окисления жиров. Например, при работе невысокой интенсивности (до 50% МПК) окисление происходит за счет окисления жиров. При более интенсивной работе, доля участия в энергообеспечении жиров – уменьшается, а углеводов – увеличивается. Белки тоже могут использоваться для энерготворения. Но преимущественно те, которые могут трансформироваться в глюкозу или другие продукты процесса окисления.

3. Мощность и емкость путей энергообеспечения работ

Возможности каждого из указанных энергетических механизмов, определяется мощностью (скоростью освобождения энергии в метаболических процессах), и объемности, которая определяется величиной достигаемых для использования субстрактых фондов.

Обеспечить действующие органы большим количеством энергии за минимальное время способны креатинофосфокиназная реакция и использование запасов АТФ тканей. В энергообеспечении работы максимальной интенсивности решающую роль играют анаэробные алактатные источники. Анаеробные гликотические источники связаны с запасами гликогена в мышцах, который расщепляется с созданием АТФ и КФ. Но в отличие от алактатных анаэробных источников, этот путь энерготворения имеет более замедленное действие, меньшую мощность, но более высокую выносливость. Аэробные источники энергообеспечения имеют меньшую мощность, но обеспечивают проведение работы на протяжении длительного времени, так как их емкость очень велика.

При нормальном питании в мышцах человека находится около 500гр. гликогена. Это основной резерв энергообеспечения мышечной деятельности. В жировой ткани (триглицериды) находятся большие запасы химической энергии, которая мобилизуется во время длительной работы. Однако для освобождения энергии триглицериды должны пройти сложный путь превращения в жирные кислоты, которые попадают в кровоток и используются в процессе аеробного метаболизма. В процессе освобождения энергии глюкоза содержащаяся в гликогене мышц и печени, или жирная кислота окисляется до СО2 и воды. Этот процесс называется аэробным метаболизмом, осуществляется в два этапа, и достигается при помощи серии последовательных превращений при участии большого количества ферментов. На первом этапе, после двенадцати последовательных реакций метаболизма глюкозы, создается пируват. На втором этапе, при достатке кислорода, пируват поступает в митохондрии и полностью окисляется до СО2 и воды. При недостатке кислорода, или его отсутствии, пируват превращается в молочную кислоту. Количество АТФ, которое получается в результате аэробного окисления и анаэробного гликолиза, разное. При полном окислении одной молекулы глюкозы до СО2 и воды, освобождается 39 молекул АТФ. При процессе гликолиза, при использовании 1 молекулы глюкозы создается всего 3 молекулы АТФ. В процессе анаэробного гликолиза, очень велика скорость создания АТФ, при этом освобождается большое количество энергии. Одновременно тратятся запасы гликогена. В результате анаэробного гликолиза создается молочная кислота и протоны.

Аэробные источники допускают окисление жиров и углеводов кислородом воздуха. Аэробные процессы проходят постепенно, их максимум достигается через несколько минут после начала процесса. Благодаря большим запасам глюкозы и жиров в организме и неограниченным возможностям потребления кислорода из атмосферного воздуха, аэробные источники, дают возможность выполнять работу на протяжении длительного времени. Имея высокую экономичность, их емкость очень велика. Основными источниками в энергообеспечении кратковременной высокоэффективной работы являются анаэробные алактатные источники. Немедленный ресинтез АТФ обеспечивается креатинфосфатом мышц. В мышцах человека имеется достаточное количество креатинфосфата для поддержания постоянного уровня АТФ в мышечных клетках на протяжении 5 – 8 сек. Используется креатинфосфатный механизм для мгновенного ресинтеза АТФ, что дает время разворачиванию более сложного гликолитического процесса. Общий мышечный запас фосфогенов может быть использован за несколько секунд высокоинтенсивной работы. Истощение запасов КрФ приводит к сильному снижению мощности работы. Это происходит по тому что гликолиз не может обеспечить достаточное количество АТФ необходимой для растрат в мышцах. В соревнованиях, в которых выполняются кратковременные работы максимально возможной интенсивности, решающую роль играет высокая мощность анаэробных алактатных источников. Крайне важна их роль в легкоатлетическом спринте, легкоатлетических прыжках, метаниях, тяжелой атлетике, плавании на 50м., а также при выполнении кратковременных, высокоинтенсивных действий в сложно-координационных видах спорта, спортивных единоборствах, спортивных играх. Анаэробные лактатные источники энергии играют решающую роль в энергообеспечении работы, которая имеет продолжительность от 30сек. до 6мин. Именно они обусловливают выносливость в беге на 400, 800 и 1500м., в плавании на 100 и 200м. Аэробный путь энергообеспечения является основным во время длительной работы: плавании на 800 и 1500м., беге на 5000 и 10000м. и марафонском беге.

При менее длительной работе, которая обеспечивается преимущественно анаэробными источниками, большое значение имеют и аэробные источники. Существенное преимущество имеет даже частичное освобождение энергии аэробным путем. Во-первых АТФ создается экономичнее – расщепляется меньше гликогена. Во-вторых для обеспечения доставки кислорода должен увеличиваться мышечный кровоток, что в свою очередь позволит продуктам распада быстрее диффундировать в кровяное русло и убираться.

Способность к длительному выполнению работы с помощью каких либо источников энерготворения, определяется размерами соответствующих субстратных фондов, и эффективностью их использования, что проявляется в скорости врабатывания, утилизации и экономичности. В отношении алактатных анаэробных источников проблема быстрого достижения максимальных показателей мощности (врабатывания) не стоит. Для лактатных анаэробных и особенно аэробных источников, время достижения максимальных показателей мощности является важным фактором ее эффективности. Параметром обозначающим эффективность энергообеспечения и выносливости спортсмена при длительной работе, является способность к утилизации функционального потенциала, которая оценивается по показателям достижения порога анаэробного обмена (ПАНО). О нарастании порога анаэробного обмена, свидетельствует увеличение концентрации лактата в крови. Привести к значительному увеличению ПАНО способны: повышение приспособительских возможностей кислородно-транспортной системы и изменение мышечной ткани под влиянием специальных тренировок.

4. Техника движенческих действий и тактика

высокой психической стойкостью, демонстрируя выдающиеся спортивные результаты, доводят себя до сверх глубоких степеней исчерпания функциональных резервов, достигая нарушений в деятельности вегетативных систем, которые граничат и часто превышают представления о возможностях человеческого Выносливость зависит от умения экономно расходовать запас энергии. Основные факторы экономичности – это совершенство техники движений и избранный тактический вариант. При выполнении даже тяжелой работы, движения должны быть свободными, не напряженными. Скованность движений вызывает излишнюю скованность мышц-антагонистов. По этому во многих видах спорта, основным признаком высшего мастерства является умение расслаблять мышцы, которые не принимают участия в выполнении основных двигательных действий. Для спортсменов очень важно научится расслаблять мышцы лица. Если спортсмен научится это делать, то и другие мышцы, не принимающие участия в работе, тоже будут менее напряжены. Благодаря этому спортсмен будет экономичнее расходовать энергию, медленнее утомляться, лучше восстанавливать силы после работы. С точки зрения экономичности, и излишние, и скованные движения, одинаково вредны. В спортивной практике бытует мнение, что стойкость двигательных навыков – это необходимое условие спортивного мастерства. Но анализ техники пловцов высокого класса, говорит о том, что даже они не могут сберечь одинаковые характеристики движений на протяжении всего периода прохождения дистанции. Основные технические характеристики, на протяжении соревнований, претерпевают значительных изменений. Что позволяет спортсменам сохранять заданную скорость, не смотря на прогрессирующие утомление.

Мышечная работа, интенсивность которой неизменна, требует наименьших энергозатрат. Поэтому спортсменам в циклических видах спорта, до недавнего времени рекомендовали поддерживать постоянную скорость от старта до финиша. Но такая техника не всегда обеспечивает наивысшую продуктивность. Она продуктивна только при мышечной работе, которая длится более 2мин.. При менее длительных упражнениях, оптимальна техника «раскладки скорости». Она характеризуется высокой стартовой скоростью, и постепенным ее снижением по мере исчерпания запасов энергосистем. Для более полного исчерпания энергетического потенциала, с первых секунд упражнения, необходимо поставить энергетические системы в наиболее тяжелые условия. По мере увеличения интенсивности мышечной работы, энергорастраты возрастают не пропорционально интенсивности, а намного больше. Поэтому увеличение интенсивности движений всегда сопровождается снижением экономичности движений.

Экономичность двигательных действий – это комплексный показатель, который обусловлен функциональной и технической экономичностью.

Функциональная экономичность обусловлена согласованностью в работе вегетативных систем и способностью продолжительное время работать в устойчивом состоянии (потребление кислорода отвечает кислородному запросу) при высоком уровне потребления кислорода. Применение метода непрерывного стандартизированного упражнения, с постепенным повышением интенсивности от умеренной до пороговой, способствует развитию функциональной экономичности.

Техническая экономичность обусловлена рациональной биомеханической структурой движений и их автоматизацией. Автоматизация движений помогает устранению лишних напряжений, а в следствие этого и уменьшению энергозатрат.

Значительное влияние на проявление выносливости имеют личностные качества спортсмена и его психическая стойкость в стрессовых ситуациях, характерных для соревновательной деятельности. Целеустремленность, настойчивость, выдержка, уверенность в своих силах, способность переносить значительные отрицательные изменения, нарастание кислородного долга, повышение концентрации молочной кислоты в крови и так далее, играют большую роль в демонстрации высоких показателей выносливости и спортивном мастерстве в целом. В наше время, в финалах больших состязаний, принимают участие спортсмены с приблизительно равной физической и технической подготовкой, придерживаются одинаковой тактики. В сложных условиях спортивной борьбы, чаще всего решающими являются именно психические способности.

Фактор генотипа (наследственности) и среды.

Общая (аэробная) выносливость в некоторой мере обусловлена влиянием наследственных факторов. Генетический фактор существенно влияет на развитие анаэробных возможностей организма. На статическую выносливость,наследственность имеет тоже большое влияние. Для динамической силовой выносливости, влияния наследственности и среды примерно одинаково. На женский организм наследственные факторы больше влияют при субмаксимальной мощности, а на мужской – при работе умеренной мощности.

18. Биоэнергетическое обеспечение мышечной деятельности. Соотношение между путями ресинтеза АТФ при выполнении физических нагрузок различного характера. Зоны относительной мощности работы. В организме постоянно поддерживается энергетический баланс поступления и расхода энергии. Жизнедеятельность организма обеспечивается энергией за счет анаэробного и аэробного катаболизма (процесса расщепления сложных компонентов до простых веществ), поступающих с пищей белков, жиров, углеводов. При окислении выделяется; а) 1г.белка, 4,1 ккал энергии, б) 1г.углеводов, 4,1 ккал, в) 1г.жира 9,3 ккал.

В процессе биологического окисления эта энергия высвобождается и используется, прежде всего, для синтеза АТФ и КрФ (энергопродукция), которая, как говорилось выше, осуществляется 2-я путями;

1.АНАЭРОБНЫМ (за счет АТФ, КрФ и глюкоза),2.АЭРОБНЫМ (за счет окисления углеводов, а затем жиров).

Аэробный путь ресинтеза АТФ (синонимы: тканевое дыхание, аэробное или окислительное фосфорилирование) – это основной, базовый способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнмаютсядва атома водорода (2протона и 2 электрона) и по дыхательной цепи передаются на малекулярный кислород – О2, доставляемый кровью мышцы из воздуха, в результате чего возникает вода. За счет энергии, выделяются при образовании воды, происходит синтез АТФ из АДФ и фосфорной кислоты. Обычно на каждую образовавшуюся молекулу воды приходится синтез 3 молекул АТФ.

Скорость аэробного пути ресинтеза АТФ контролируется содержанием в мышечных клетках АДФ, который является активатором ферментов тканевого дыхания. В состоянии покоя, когда в клетках почти нет АДФ, тканевое дыхание протекает с очень низкой скоростью. При мышечной работе за счет интенсивного использования АТФ происходит образование и накопление АДФ. Появившийся избыток АДФ ускоряет тканевое дыхание и оно может достигнуть максимальной интенсивности.

Другим активатором аэробного пути ресинтеза АТФ является СО2. Возникающий при физической работе в избытке углекислый газ активирует дыхательный центр мозга, что в итоге приводит к повышению скорости кровообращения мышц кислородом.

Максимальная мощность. По сравнению с анаэробными путями ресинтеза АТФ тканевое дыхание обладает самой низкой величиной максимальной мощности. Это обусловлено тем, что возможности аэробного процесса ограниченыдоставкой кислорода в митохондрии и их количеством в мышечных клетках. Поэтому за счет аэробного пути ресинтеза АТФ возвожно выполнение физических нагрузок только умеренной мощности.

Время развертывания – 3-4 мин. У хорошо тренированных спортсменок может быть около 1 мин. Такое большое время объясняется тем, что для обеспечения максимальной скорости тканевого дыхания необходима перестройка всех систем организма, участвующих в доставке кислорода в митохондрии мышц.

Время работы с максимальной мощностью составляет десятки мин. Источниками энергии для аэробного ресинтеза АТФ являются углеводы, жиры и аминокислоты, распад которых завершается циклом Крепса. Причем для этой цели используются не только внутримышечные запасы данных веществ, но и углеводы, жиры, кетоновые тела и аминокислоты, доставляемые кровью в мышцы во время физической работы. В связи с этим данный путь ресинтеза АТФ функционирует с максимальной мощностью в течение продолжительного времени. Что является положительным фактором для гимнасток, особенно значительную роль это играет при многоборье. Однако значительным недостатком аэробного образования АТФ считается большое время развертывания (3-4 мин.) и небольшую по абсолютной величине максимальную мощность. Поэтому мышечная деятельность, свойственная худ. Гимнастике, не может быть полностью обеспечена этим путем ресинтеза АТФ и мышцы вынуждены дополнительно включать анаэробные способы образования АТФ, имеющие более короткое время развертывания и большую максимальную млщность.

Под влиянием систематических тренировок, направленных на развитие аэробной работоспособности, в миоцитах возрастает количество митохондрий, увеличивается их размер, в них становится больше ферментов тканевого дыхания. Одновременно происходит совершенствование кислород – транспортной функции: повышается содержание миоглобина в мышечных клетках и гемоглобина в крови, возрастает работоспособность дыхательной и сердечно – сосудистой систем организма гимнасток.

Анаэробные пути ресинтеза АТФ (креатинфосфатный, гликолитический) являются дополнительными способами образования АТФ в тех случаях, когда основной путь получения АТФ – аэробный не может обеспечить мышечную деятельность необходимым количеством энергии. Это бывает на первых мин. любой работы, когда тканевое дыхание еще полностью не развернулось, а также при выполнении физических нагрузок любой мощности.

В мышечных клетках всегда имеется креатинфосфат – соединеие, содержащее фосфатную группу, связанную с остатком креатина макроэргической связью.(15-20 ммоль/кг. В покое).Креатинфосфат обладает большим запасом энергии и высоким средством к АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющиеся в мышечных клетках при физической работе в результате гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина АТФ.При мышечной работе активность креатинкеназы значительно возрастает за счет активирующего действия на нее ионов кальция, концентрация которых в саркоплазме под действием нервного импульса увеличивается почти в 1000 раз. Креатинфосфат, обладая большим запасом химической энергии, является веществом непрочным. От него легко может отщепляться фосфорная кислота, в результате чего происходит циклизация остатка креатина, приводящая к образованию креатина. Образование креатина присходит без участия ферментов, спонтанно. Частично запасы креатинфосфата могут восстанавливаться и при мышечной работе умеренной мощности, при которой за счет тканевого дыхания АТФ синтезируется в таком количестве, которого хватает и на обеспечение сократительной функции миоцитов и на восполнение запасов креатинфосфата реакция может включаться многократно.Образование креатина присходит в печени с использованием 3 аминокислот: глицина, метионина и аргинина. Спортсмены для повышения в мышцах концентрации креатинфосфата используют в качестве пищевых добавок препараты глицина и метионина.

Максимальная мощность – 900-1100 кал./мин кг., что в 3 раза выше соответствующего показателя для аэробного ресинтеза.

Время развертывания – всего 1-2с. Исходных запасов АТФ в мышечных клетках хватает на обеспечение мышечной деятельности как раз в течение 1-2 с., и к моменту их исчерпания креатинфосфатный путь образования АТФ уже функционирует со своей максимальной скоростью.

Время работы с максимальной скоростьювсего лишь 8-10 с., что связанно с небольшими исходными запасами креатинфосфата в мышцах.Главными преимуществами креатинфосфатного пути образования АТФ являются очень малое время развертывания и высокая мощность, что имеет крайне важное значение для скоростно – силовых видов спорта (х. гимнастика). Главным недостатком этого способа синтеза АТФ, существенно ограничивающим его возможности, является короткое время его функционирования. Время поддержания максимальной скорости всего 8-10 с., к концу 30-й с. его скорость снижается вдвое. Анаэробная реакция окажется главным источником энергии для обеспечения кратковременных упражнений максимальной мощности, таких как прыжки, броски и т.д. в худ. гимнастике. Креатинфосфатная реакция может неоднократно включаться во время выполнения физ.нагрузок, что делает возможным быстрое повышение мощности выполняемой работы, развития ускорения во время выполнения соревновательных упражнений. 5-20 ммоль/кг. атную группу, связанную с остатком креатина макроэргической связью.(ских нагрузок любой мощности.ой путь получен

Поделиться: